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From DFT to Reaction Rates 
H2O/Ni  H/Ni + OH/Ni 
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Reaction barrier 

How fast is the reaction  in the experiment? 
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Both energetics and concentrations determine the reaction rate 

G.-C. Wang et al. / Journal of Catalysis 244 (2006) 10–16 



Catalysis Center for Energy Innovation 

3 

Reaction Paths 

Pathway 1 

Pathway 2 

Which pathway is dominant? What is the rate-controlling step?  
Microkinetic model gives an answer 

Rates can be compared to experiment for model validation 

r1 

r2 

r3 

r4 r5 

Unpublished results 

0 ML O/Ru 0.25 ML O/Ru 0.5 ML O/Ru Activity and adsorption 
mode depend on oxygen 
coverage 
Surface oxygen is produced 
in the reaction 

Microkinetic model can predict reactivity as a 
function of surface environment 
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Limitation of Mean Field Microkinetic 
Models (MKM) 

H/Ni + OH/Ni    H2O/Ni  

  OHHeAr
RT

raE ,

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Product of species  
concentrations/probabilities 

MKM MKM 

I. Chorkendorff, J.W. Niemantsverdriet 

MKM is applicable for well-
mixed systems with low degree 

of order 
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Toy Problem 

NH3 

Plug flow reactor 
N2, H2, NH3 

T = 973 K, P = 1 atm, V = 1cm3, 
0.1 g 1%Pt/C catalyst 

Initial composition Final composition 

Reaction network 

2NH3  N2 + 3H2 on Pt catalyst 

Comparison with 
experimental data 

•  What is the predicted NH3 conversion? 

•  What is the reaction mechanism? 
•  What is the rate-controlling step? 
•  How does the surface look like under reaction conditions?  
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Toy Problem 
NH3 

Plug flow reactor 
N2, H2, NH3 

T = 973 K, P = 1 atm, V = 1cm3, 
0.1 g 1%Pt/C catalyst 

Adsorption: 
NH3 + * = NH3

* 

N2 + * = N2
* 

H2 + 2* = 2H* 

 

Surface reactions: 
N2

* + * = 2N* 

NH3
* + * = NH2

* + H* 

NH2
* + * = NH* + H* 

NH* + * = N* + H* 

 

Example of a mass balance for N* species: 

Parameters needed: 
• Forward rate constants k 
• Equilibrium constants Kc 
• Number  of catalytic sites 

How can we get the parameters? Predict them! 

rates 
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Equilibrium Constants 

Kc can be related to 
thermodynamic state functions: 

Surface site density, mol/cm2 

NIST database 

How can we calculate S and H 
for surface species? 
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Equilibrium Constants 

Equilibrium constants can be calculated from DFT energies and vibrational 
frequencies 

Zero-point 
energy 

(ZPE;  ≠f(T)) 

Temperature 
correction 

(= f(T)) 

DFT energy 

Vibrational 
frequencies 
from DFT 

Key assumption: only vibrational degrees of freedom (n) are 
present in surface species 

N/Pt(111): 3 degrees of freedom:  425, 382, 372 cm-1 
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Thermodynamic Consistency 

OH/Ru(0001) 

DFT energy: 

slab energy: 

ZPE: 
T correction: 

• Needs to be converted to 
thermodynamically 
meaningful quantity 

• Reference state must be 
chosen 

 

One reference choice:  
O2 (gas) and H2 (gas) 

Not physical 

Use of the same reference set for all species guarantees 
thermodynamic consistency 
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1/2H2+1/2O2 OH 

DFT energy 

DFT  
energy 

ZPE, T corr. 

ZPE,  
T corr., 
Transl. 
Rotat.  
PV 
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Lateral interactions 

1Guo, Wei, and Dionisios G. Vlachos. The Journal of chemical physics 138 (2013): 174702. 
2Grabow, Lars C., Britt Hvolbæk, and Jens K. Nørskov. Topics in Catalysis 53.5-6 (2010): 298-310. 
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y = 0.96x - 3.205 
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y = 1.92x - 3.5 
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Oxygen coverage on Ru(0001) 

Not correct 

Correct! 

Lateral interaction can be approximated by linear model 
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Rate Constants for Surface Reactions 

Transition state theory 

kf 

Rate constants can be calculated from DFT energies and 
vibrational frequencies of initial and transition states 

In the first approximation: 

Useful for first-pass MKM models 
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Rate of Adsorption 
kf 

From collision theory: 

Mean thermal velocity Sticking coefficient 

The model is applicable to 
both gases and liquids1 

1Jung and Campbell. Physical Review Letters 84: 5164 (2000) 

S = 0.1-1: non-activated adsorption 
S < 10-6: activated adsorption 
  S = 10-8 – 10-6: liquids1 

Site density 
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Number of Catalytic Sites 
NH3  

Plug flow reactor 
N2, H2, NH3 

T = 400 K, P = 1 atm, V = 1cm3, 
0.1 g 1%Pt/C catalyst 

CO Chemisorption: 
2.2 10-4 mol CO/g of catalyst 

2.2 10-4 mol Pt/g of catalyst 

2.6 10-9 mol Pt sites/cm2 

8.3 103 cm2 of Pt surface 
in the reactor 

Area-to-volume ratio 
A/V = 83 cm-1 

A/V can be calculated from CO chemisorption data 
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Chemkin-II is the Foundation of the Reactor 
Code 

Chemkin 
Surface 

Chemkin 

Thermochemistry 
Reaction Input 

Reactor Conditions 
Vlachos Group 
Reactor Code 

Output & 
Post-processing 

Chemkin/ Chemkin II libraries from Sandia laboratories 
facilitate model development 
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Defining the Thermochemistry 
• Properties are usually defined in one file thermdat 

• Data is stored as NASA polynomial coefficients 
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High T a1 – a7 followed by low T a1 – a7 in 15 character wide fields 
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Defining the System Chemistry 
Gas.inp (gas phase) 

Elements go here (required) 
key word – ELEMENTS 

Species go here (required) 
key word – SPECIES 

Reactions go here (optional) 
key word – REACTIONS 

All fields start with a key word and end with ‘END’ 
Anything after an exclamation point (!) is a comment 

surf.inp (surface phase) 
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Defining the System Chemistry 
Gas.inp (gas phase) surf.inp (surface phase) 

Define 
surface/bulk 
species and 
number of sites 
occupied 
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Defining the System Chemistry 
Gas.inp (gas phase) surf.inp (surface phase) 

Adsorption 
reactions need the 
STICK key word  

Reaction key words and units 

Balanced equation followed by pre-exponential or 
sticking coefficient, temperature exponent, and 
activation energy 

Sticking coefficients 
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Defining Adsorbate Interactions via 
tube_COV.inp 

Total number of species affected 

“TOL interacts with TOL” 
“When going from zero coverage limit to 1 

monolayer (ML), binding energy of TOL 
decreases by 76 kcal/mol” 

“No lateral interactions below 0.38 ML TOL 
coverage” 
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Controlling the Code via tube.inp 
Reactor type 
Number of runs 

Temperature, pressure, flow rate, 
A/V ratio, T ramp 

Reactant and MARI species to keep track of 
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Controlling the Code via tube.inp 

Reactor volume Running time 

Coverage effects on/off 

Sensitivity Analysis on/off (to determine a 
rate-determining step) 
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List of Important Output Files 

• Most output files/types are self-explanatory 
• Further examine green highlighted output types 

Output Type File(s) 

Kinetic parameters Beta_out.out, Ea_over_RT.out, Preex_out.out, 
stoich_matrix.out 

Thermochemistry EQKC_out.out, [HGS]rxn_out.out, [HS]form_out.out 

Conversion tube_conv.out 

Surface coverages tube_cov_tra.out, tube_cov_ss.out 

Gas composition tube_gasmole.out, tube_gasmass.out (mole/mass 
fractions) 

Species production rates tube_gas_sdot.out (in mol/cm2/s) 

Reaction Path Analysis tube_rpa.out, rpa_vis_output.txt 

Sensitivity Analysis tube_sen.out 
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Overview of Reaction Path Analysis 

• Reaction path analysis involves following the 
production/consumption of each species 

• Partial equilibrium ratio shows the degree of 
reversibility of an elementary step (PEI~0.45-0.55 
denotes partial equil.) 

 

 

• Can be used to understand the fluxes, i.e., which 
reactions contribute to products and to construct 
reduced mechanisms 
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Overview of Reaction Path Analysis 
• Format of tube_rpa.out 
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fwd rev

r
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r r
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-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

300 °C
340 °C

Normalized Sensitivity Coefficient

Overview of Sensitivity Analysis 

Sensitivity analysis measures 
the effect of perturbing a 
parameter (e.g. a pre-
exponential) on a response 
(e.g., the conversion) 

Sensitivity analysis is useful for 
Determining a rate-controlling 
step 

Subsequent parameter 
refinement 

ln

ln
i

i

d X
NSC

d k


Determining the sensitive 
reactions in ethanol SR 

RDS 

Inhibiting 
reaction 
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Running chemkin 

Copy input files to your machine 

cp –r ./software/Workshop14/Tutorials/Tutorial4/chemkin_toy .  

Type chmod +x chemkin.sh 

Launch chemkin by typing ./chemkin.sh 
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Output Files to Look For 
OUT.d directory 

1. tube_conv.out: conversion and reaction rate 
2. tube_gasmole_ss.out: gas composition along the reactor 
3. tube_cov_ss.out: surface coverages along the reactor 
4. tube_rpa.out:  Reaction path analysis output 
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Running Sensitivity Analysis 

1. /INP.d/tube.inp: set lsen = T 
2. ../chemkin.sh: run the model 
3. /OUT.d/tube_sen.out: output file 
4. Find the reactant; the highest absolute value corresponds to 

the rate-controlling step 
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Things to Play With 

1. Vary temperature, pressure, reactor volume and see what 
effect it has on conversion, rates, and coverages 
 

2. Turn off lateral interactions, reduce the N22N barrier, and 
increase the pressure. What effect it has on coverages? 
 

3. Change the feed composition; flow rate and see what effect it 
has on the output. 
 

4. Run the sensitivity analysis and explore the changes in a rate-
controlling step, when elementary barriers are perturbed 
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Advanced Exercises 

1. In a first approximation, energy barriers can be linearly related 
to reaction energies via BEP relationships. The relationships 
are given in INP.d/BEP.inp.  
• Set lBEP = T in tube.inp file, and see how different the 

results are compared to fully ab initio, DFT-based case. 
 

2. All reaction energetics can be related to C, H, O, N atomic 
binding energies, so that reactant convertion can be plotted as 
a function of only 2 descriptors. In this way, optimal catalyst 
properties can be predicted. Alter Scaling.inp file following 
instructions in it, assuming that binding energies of NHx 
species are linearly related to the N binding energy with the 
slope (3-x)/3.   
 


