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Surface Reaction Rate Calculation Paradigm

e Hierarchy of calculation of surface reaction rates

Langmuir- _ I
Empirical rate- Hinshelwood rate- MICrlok_ln.enc
law; typically |law; developed Ena ysis; i
fitted to using rate - No IgstSumDp ions
experimental data | | d€termining step ‘1’393 (Dumesic,

(RDS) and MF )

theory

1

Complexity/Reliability/Accuracy
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Microkinetic Modeling

* All relevant elementary reactions An example
— Written by hand or computer generated? Hz(g) +%02(g) > Hzo(g)
* No simplifying assumptions
* Rate determining step (RDS), partial Elementary Re actions
equilibrium (PE), quasi-steady state (QSS), " "
agd most abundait reaction?ntermediate Mg +27 > 21
(MARI) are all computed Dy 2T = 20
* Reactor + Catalyst model needed H*+0* > HO®+*
— Use computer software, such as surface HO*+H* 2 H,0*+*
CHEMKINS3, Cantera?, or Matlab H,0* > Hzo(g)

'Ring: Rangarajan et al., Computers & Chemical Engineering 45, 114 (2012).

2Cantera (Matlab Chem Kinetics Package): Goodwin et al., Cantera: An Object-oriented Software Toolkit for
Chemical Kinetics, Thermodynamics, and Transport Processes. 2014.

3Chemkin (Fortran Chem Kinetics Package): Coltrin; Kee and Rupley, Int. J. Chem. Kinet. 23, 1111 (1991).
Coltrin; Kee and Rupley Surface CHEMKIN (Version 4. 0): A Fortran package for analyzing heterogeneous
chemical kinetics at a solid-surface---gas-phase interface; SAND-90-8003B; 1991.

Reactor Design (commercial kinetics software)
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Parameter Estimation of Microkinetic
Models

» Parameters fitted to data
v Inability to simultaneously predict multiple experimental sets
» Parameters estimated with empirical methods (Bond-Order Conservation)
v’ Efficient, reasonable accuracy (2-4 kcal/mol)
v' Limited to small adsorbates
» Density functional theory (DFT)-based semi-empirical methods
v' Group additivity, Brgnsted-Evans-Polanyi (BEP) relations
» Parameters obtained from DFT
v Fairly accurate (<5 kcal/mol)
» Hierarchical methods

v' Empirical or semi-empirical to screen; DFT to refine (zero coverage limit)
v Include coverage effects
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Hierarchy Enables Rapid Screening of
Chemistry, Fuels, and Catalysts

Length
Accuracy, cost
Reactor scale: Ideal: Pseudo-homogeneous:|| Computational
PFR, CSTR, etc. || Transport correlations || Fluid Dynamics
Performance o P i
Catalyst scale: Continuum: || Mesoscopic: Discrete: Discrete:
Reaction rate MF-ODEs PDEs CG-KMC KMC
- i Quantum-based Quantum:
Sleciogc S.C8'Ie.' correlations: ab initio, DFT, TST,
Parameter estimation BEPs, GA, LSRs CPMD, QM/MM MD
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Accuracy of MKM

 Myth: A microkinetic (detailed) model [even
with DFT input] can quantitatively describe
experimental data
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C,H,O, Steam Reforming

10

. -1
Ea. 18 kcal mol Ea: 17 keal mol™! 05
e, ﬁS . 204 .1St (C-H) Thermal Dehydrogenation
g 10 E 10 \\\. é A7 .2nd (C-H) Thermal Dehydrogenation
z 1 \‘\\ £ 1 QL.% 0.4r . 1 (O-H) Thermal Dehydrogenation
& 10 E - 15 keal mol”! g 10 . 8 035 . 1 (C-H) Oxidative Dehydrogenation
T a’ calmo o E : 15 keal mol 2 . - (O-H) Oxidative Dehydrogenation
-2 ) ) ) ) ) -2 ) ) ) ) ) -": 03 [
101.8 1.9 2 2.1 2.2 2.3 101.8 1.9 2 2.1 2.2 2.3 E
1000 T/ K! 1000 T /K! % 0.25
o
10" 10' a2 0
= Ea: 26 kcal mol”! ~ _\E-il.?’kil.m(ﬂ .g 0.15.
= =) 0 TES
g \-\\. g \ é 0.1F
2 107 o o
< = Z. B
‘:"N \ 52 107" Ea: 16 kcal mol™! 0.05 I I I I I
S el oL - —_— — —

. -1
E 20 keal mol T = 483K T = 483K T = 543K T = 543K

10_;8 19 2 21 22 23 10_12.8 19 2 21 22 23 Excess Water ~ Stoichiometric Excess Water ~ Stoichiometric
1000 T ' /K 1000 T ' /K Feed Conditions
Model (4) Experiments (m)
» Good agreement with data” ®» Thermal dehydrogenation steps are
®» No parameter fitting performed kinetically most important
» OH*-mediated steps inactive on Pt
" Kandoi et al., J. Phys. Chem. C 115 (4) 961 (2011) (d ue to low [OH*])

Christiansen and Vlachos, App. Cat. A: General 431-432, 18 (2012).
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You Need to Ensure That MKM Captures
Correctly

®» Temperature effects

W

Reaction orders of reactants

» Reaction orders of products
(Effect of co-feeding products)

» |deally the RDS is tested
spectroscopically

» |deally the MASI is tested via IR

Salciccioli; Stamatakis; Caratzoulas and Vlachos, Chem. Eng. Sci. 66, 4319 (2011).
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Lateral Interactions:

Estimation via Hierarchical
Estimation Methodology

Myth: After parameterization of a microkinetic model
via DFT (or semi-empirical methods), the model is
correct and no further refinement is needed
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Lateral Interactions Are Typically Critical

1.5

1

y (nm)

0.5

0

S " (@ E.= 54 kcal/mol

(b) E,= 41 kcal/mol

(c) E,= 23 kcal/mol

® Adsorbate heterogeneity arises due to coverage effects

¢ Combinatorial problem in a priori estimating kinetic
parameters due to coverage effects

Review of Catalyst and Kinetic Modeling: Salciccioli et al., Chem. Eng. Sci. 66, 4319 (2011)
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Hierarchical Multiscale Modeling Principle:
Dealing with Size (No. of Reactions and Coverage)

» Start with a sufficiently simple, physical model at each scale
* Automatic mechanism generation
* First-principles based semi-empirical parameter estimation

» Link all models

» |dentify important scale and parameter(s)
* Sensitivity and flux analyses

» Use higher level theory for this scale and parameter(s)

* Kinetically relevant steps, inclusion of coverage effects, internal
diffusion, etc.

» |terate

First-principles accuracy at orders of
magnitude reduced cost
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NH; Decomposition on Ru: 2NH; =N,+3H,

100

* NHj; as a storage medium . /| Exptl: Ganley

Dyrpa’ 0 . /| etal, AfchE
e ‘Pure’ H, — No CO, £ 60 ®  pFRmodel /| 2003
* A microkinetic model 1s £ 40 ° \

. . 5 Y -
build using BOC and TST S0l o '
. . . =z °

e Qur microkinetic model N PP :

® Expts. [Ganley et al.]

captures the trend

N *

e High N* coverages

NH,+*< NH, *
NH, *+*< NH, *+H*
NH, *+* < NH *+H*

NH *+* < N*+H*

2N* < N, +2%*
2H* < H,+2*

Coverage [ML]

1250

Mhadeshwar et al., Cat. Letters 96, 13-22 (2004)
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DFT Estimates Lateral Interactions

« DACAPO (solid-state electronic
structure package by Hammer and
coworkers”)

» 3-Layer slab of Ru(0001)

® DFT Calculations (this work)
130 |----Linear fit Q, (at H*=0)=128.2-33.3N*

—Linear fit QN (at N*=0.25)=120.1-6.2H*

N-H interactions

N-N interactions—>

0
[S—
[\
()

e 2 x 2 unit cell

Heat of chemisorption, Q _[kcal/mole]

110 &
» All layers are relaxed
L
* Plane wave cutoff = 350eV 100
. . . PN N on Ru(0001) "~ o
» 18 k-points for surface Brillouin zone 00 SO 3 layer slab
0 0.25 0.5 0.75 1

* Generalized gradient approximation
(PW-91)

*Hammer et al., DACAPO version 2.7 (CAMP,
Technical University, Denmark)

(N*+H*) coverage [ML]

Mhadeshwar et al., Cat. Letters 96, 13-22 (2004)
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DFT-Retrained Microkinetic Model

100 1
PFR model
80 Fwith interactiq#s 0.8} N* without interactions
=y * without interactions
= . . .. = 0.6
£ without intera¢tions = NH *
= ' — 3 T
5 40 o b N
% g 041 \\ ."’ N*
e 20 2 R
m ’N\ __.-'-
Z 02 - )’ \\ -_‘_,--">1‘<
0 g <.
@ Expts. [Ganley et al.] L et
650 &50 1050 1250 650 850 1050 1250
T [K] T [K]

e H-H and N-H interactions are small Exps: Ganley et al., AIChE J. (2004)

« N-N interactions completely change the chemistry

« Extensive validation against UHV and high P data

Mhadeshwar et al., Cat. Letters 96, 13-22 (2004)
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Semi-Empirical Estimation Methods

» Myth: First-principles (DFT) MKM can be
developed for any mechanism and feedstock

» Estimation with first-principles semi-empirical
methods (FPSEM) is possible

» Refinement of important parameters is
feasible
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Modeling Reactions of Large Molecules is Challenging

10° | ® Combinatorial explosion in
= ltermediates @ n.umbe.r of calculations for
® first-principles (DFT)
-% calculations
3
i » Semi-empirical methods can
5 potentially identify relevant
E species and reactions
S instantaneously
Z
®» Major advances in
systematic development of
Sugars semi-empirical methods and
understanding of errors
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DFT-Based Estimation Methods

. . Microkinetic Model
Linear Scaling G Additivit Bronsted Evans
Relations L 1avity Polanyi (BEP) » Compute rates, conversion,
o : «Sinele metal o , selectivity, abundant species
* Libraries of atomic th & h - ¢ * Activation energies . g P
binding energies ermochemistry « Reaction rate « Identify key adsorbates and
* Binding energies of ’ Zgﬁﬁ‘;ﬁi’namlc constants reactions
AH, species vs. y - Al TerEEinG * Refine thermochemistry and
heteroatom A valency | *Screen adsorbates barriers via DFT

* Metal transferability

* Include adsorbate-adsorbate

* Surface thermochemistry via group additivity

* Brgnsted-Evans Polanyi relations for reaction barriers of homologous series

* Transfer thermo from one material to another (linear scaling relations)

* Perform high-throughput microkinetic modeling (MKM) for materials prediction
* |[dentify key steps and refine them via higher level theory

Review: Salciccioli et al., Chem. Eng. Sci. 66, 4319 (2011);
Salciccioli et al., J. Phys. Chem. C 114, 20155 (2010); J. Phys. Chem. C 116, 1873 (2012); Sutton
and Vlachos, ACS Catal. 2, 1624 (2012); J. Catal. 297, 202 (2013)
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Group Additivity for Adsorbed Species

* Binding for oxygenates traced to (CH,O,) groups

» Use alcohols and dehydrogenated alcohol
intermediates to develop groups

* Include contributions for AH g, S(T) and C (T)

AH; 508 Value

Group [kcal/mol]
[C(C,H,)-O(M,H)] -50.2
[C(C,H,M)-O(H)] 268 T
[C(C,M,)-O(H)] -39.3
[C(C,H,))-O(M)] -26.1
[C(C,H,M)-O(M)] -26.5
[C(CM,M)-O(M)] -33.4
[C(CM)=0] -33.4
[C(C,,H)-O(M,H)] -51.1
[C(C,,M)-O(H)] -42.9
[C(C,,H)-O(M)] -25.1
[C(C,,M)-O(M)] -23.0
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Group Additivity for Adsorbed Species

» Second-order effects T T T T _
included: T te0f O
included: | . E [ 0 CHO,
* 4-member ring strain = - (]
. . Q i
* Weak interactions = 120}
* Hydrogen bonding 2 »
2 : sy e
® Calculations of AH;,qq Of S 80}
C,H,0, and C,;H O, species & |
show good quantitative 2 40
agreement im0
. -40 80  -120  -160
» This method can be used for DFT calculated [kcal/mol]

initial screening of larger Values are taken with respect to the

hydrocarbons and oxygenates most highly hydrogenated species in
the gas phase (C,H.,O,, C;H;O,) and H
adsorbed on a separate slab

Salciccioli et al., J. Phys. Chem. C 114, 20155 (2010); J. Phys. Chem. C 116, 1873 (2012)
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Transferability Between Metals

» Molecular binding energy is linearly dependent on atomic
binding energy!

» These correlations relate molecular binding energy to
atomic binding energy on different surfaces

» Multidentate species can be accounted for by summing the
contributions of each bond to the surface?

H H H H

| | ~ |
Hwd-OH H_lOH =~ Ho_l_ | _oH

]
[
T

&

&

AE™: (ev)
2

1yl 751,08
-----------

CHy QM — th + Z(QA,i,M — QA,i,Pt )Y(X) + AES + AEROH
Al

] 1 1
=4 =3 ==

[1] Abild-Pedersen et al. PRL 99, (2007)
[2] Salciccioli, Y. Chen, and Vlachos, J. Phys. Chem. C 114(47), 20155 (2010)



ey Catalysis Center for Energy Innovation

Transferability Between Metals

®» This scheme was validated by testing the binding energy of all
C,H,0, intermediates on Ni(111) and Ni-Pt-Pt(111)

®» These correlations allow for metal transferability of the C,H.O,
decomposition mechanisms

= -120 . — =120

o

£ [ Ni1-Pt-Pt(111) o7 Pt(lll) g Ni(111) -

—i 80} o0 Q0 Q: g 80} épf .

o o6 4

- 40t . l "Cdy 40t o

2 [ ] ]

g | | | 5

2 0550 -1204_1 Qe m,0, — £ 00HoTTR0 20

Q DFT [kcal/mol]

Salciccioli, Y. Chen, and Vlachos, J. Phys. Chem. C 114(47), 20155 (2010)
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Linear Free-Energy Relations (LFR)

» Two types of relations are found
* Transition State Scaling (TSS)
] * Bronsted-Evans-Polanyi (BEP)

®» There is reductionistic trend of combining multiple
reaction types into a homologous series

* Minimal calculations
* Accuracy may be sacrificed

» Connection between the two LFR types and distinct
homologous series
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Distinct Homologous Series Developed

—@-— Corrhined GH
- OH

-— Corrbined C-C
--A--COH
3|-w-co

Activation Energy (eV)

Heat of Reaction (eV)

» Performed DFT calculations
for methane, methanol,
ethane, and ethanol

* 45 stable intermediates
and 124 transition states

®» Considered C-H (aand b
positions), O-H, C-C, C-O, and
C-OH reactions

» Statistical tests are used

Sutton and Vlachos, ACS Catal. 2 1624 (2012); J. Catal. 297, 202 (2013)
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Computational Savings from Hierarchy

1

» Profound
computational
savings

» (Important)
information
content
remains the
same

Glycerol thermal decomposition

DFT

conformers via GA

Chen et al., J. Phys. Chemn. 115(38), 18707 (2011)
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Hierarchical Multiscale Modeling Principle:
Dealing with Size (No. of Reactions and Coverage)

» Start with a sufficiently simple, physical model at each scale
* Automatic mechanism generation
* First-principles based semi-empirical parameter estimation

» Link all models

» |dentify important scale and parameter(s)
* Sensitivity and flux analyses

» Use higher level theory for this scale and parameter(s)

* Kinetically relevant steps, inclusion of coverage effects, internal
diffusion, etc.

» |terate

First-principles accuracy at orders of
magnitude reduced cost
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0.6
- Ethanol MKM/Pt
[ Yeu & 0.5 VoVoVa V¥
s 08,7 - A .
= 5 o > L 160 reversible
| &8 u — RIA )
o © = 04" reactions
z 06 © 1o A
S Y DDDD o * 67 gas and
= O DDDD wn 03 surface
c 04 al o CH,CH,OH < CH, + CO + H,
] DFT| — R
) 0 o ls o2 species
S - SR - CH,CH,OH <> CH,CHO + H,
- 0.2 DD o3 ]
L 1 4 |8 012CH,CH,0H « 3CH, + CO,
\V 5 —
u- (NN N N AN o~ o~ o _
e 0 POO00000000000000000D
300 3200 340 360 380 400 300 320 340 360 380 400

Temperature (°C) Temperature (°C)

» |t takes only a few iterations to converge the semi-empirical model
to be nearly indistinguishable with the DFT-based MKM

®» |nteraction parameters in the first two iterations are most critical for
gualitative agreement

Sutton and Vlachos, Chemn. Eng. Sci., In press
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Thermodynamic Consistency of MKM

» Myth: Your model is thermodynamically
consistent

» A mechanism based solely on a single DFT
mechanism is thermo consistent

®» Challenges

* DFT is not accurate for gas-phase thermo 2>
overall thermo is not accurate; thus, we often mix
high level ab initio data or NIST thermo data

* Kinetic parameters are adjusted to describe data
* Either adjustment leads to thermo incosistencies



Q Catalysis Center for Energy Innovation

Most Literature Mechanisms Are
Thermodynamically Inconsistent

WGS: CO+H,0=C0,+H,

100

80 |

CO conversion [%]
S

473

N
O
—

\®]
-
p—p—p——

e

® Experiments
(Xue et al.)

| Equilibrium

Coupling mechanism

Deutschmann et al.
/ mechanism

A/N=450 cm™

573 673
Temperature [K]

773

873

CO oxidation: CO,= CO+0

!

10*
10° — .
- Optimized mechanism
10*]
108[
10712 - Hickman and Schmidt mechanism
« °* ° °
300 700 1100 1500

Temperature [K]

1900
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Thermodynamic Loop

. A
» Reaction A——B Gas
A, A > B
k T AS /R lSurface TSurface
» TST App==—¢
. 2 S Surface *
» Pre-exponentials of a reversible A - B
reaction

AS/R =(ASy, —AS¢)/R =InAy /Ag

» Enthalpic consistency for single
reaction

E; = E, + AH A+F—> A"

* *
» Carry out a thermodynamic loop on A*—>B

a state variable X: L/ ‘Exact’ B* > B+*
A B
Xads surf - Xads :‘- A—>B
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Linear Independence and Parameter Tuning

» For every surface reaction, one can write a
corresponding gas reaction and a thermo loop

» The number of surface species usually determines the
number of independent variables

» Cannot simply change barriers or pre-exponentials to
fit data without paying attention to thermo
consistency

« Mhadeshwar et al.,, Thermodynamic consistency in microkinetic development of surface
reaction mechanisms, Journal of Physical Chemistry B 107, 12721-12733 (2003).

 Salciccioli et al., A review of multiscale modeling of metal-catalyzed reactions: Mechanism
development for complexity and emergent behavior, Chem. Eng. Sci. 66, 4319—4355

(2011).
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What Can We Use MKMs for?

» Reconcile apparently contradictory experimental data at
different conditions (TPD, steady state, various operating
conditions)

®» Mechanistic understanding
» Perform reactor optimization

Traditional

» Model-based design of experiments to assess model

» Rational catalyst design
* Composition
* Size
* Shape

Modern
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Ethylene Hydrogenation: Analysis

A IH _H H H
S o= /C C\ H_:C C...H
A IrH H H’ ‘H

E-CZH/-I L, H
n-C I Hoo  JH ¢ HOUCS, e, B/
ey H/C_'_C\H ~C -t H/C ¢
Csz " ! | | b +H-T
5-C H : N
C | I H
2 l
CH ' H\CI/H
-H* *
CCH Ho. . H T/ Ho. H Hy H ¢HH' |
CHCH X LE=( H **AH*r =5
C H **+*< >CCH kRHFY 4
C H**+H*< >CCH k| ok
-1 0 |

Normalized Sensitivity Coefficient

Hydrogenation rxns are rate controlling (n-C
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Model Reduction to Rate Expressions

H, +2* <> 2H*

Ethane HdeQg@ﬁGIySIS

C,H, + 255 1-C,H **
. 10’ Fe ' CH, F 4+ <5 G-CH
Full mechanism Full meghanism 673K
Eth ' Buulon-rg=" > Eﬁ’f eCIrEy é) rﬁB&KReactlon,

H2 *‘}922 . Icthyatie g ‘o n sThio
C %ﬂmé: 3 ‘4 i apam ‘e i —Ii%é—{u%efmodel :

c N Ste rate xpressiod
wC AT '.)""n‘c':‘ A 2*: *TE()OO
-Gl 0 Ol L= Cegblsduct d ratE&h@fb@&ﬁS CzH3 +H* + %
C, gt 3t < 0-CoH *¥x% + H* cc T 1336 K
TaE - el Cz“étH* **F%Iisi* {Lﬁ@gﬁrﬁ"or{
7. T S— CO e 11
Reduced mecharRsdu cedjg@ R LT R
3403 — - - ol ]
—e ) educ®d mogde]. _: L — -2;< *K _ _
% - Gl < M Ch, ‘L!ib 1 ]
CHYL RS tie O e Hoijieco-elz®+ CH™~ o ]
C,HJ £ %7 OO Fo ot Hoem o= Lol o CH M2 23 KT
C,H . HER O b+ H* . pr ol
Jl\ 3 .1‘_—1—_'“4 C2H6 3
oundant Worbale dbaiipueray
vV 573K A YOS g
. o w_ - —Reducedmodel e ) 3
Rate equatipn  Rate efugtion Experimpnial e cne s
104 B One stepjrate eXpression o cu* + g+

0 cHA00-cr e 1000
Hydrogen Pressure [Torr]
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Ethylene Hydrogenation Rate Expression

Rate C;H; = h_a‘“ 6 — KeCraneb.”

-
Due to multiple abundant adsorbates, the reduced rate
expression is too complex for a closed form equation

= ! ' ! o ok
- B Experimental '
I Reduced microkinetic model ; ]
100 :_.'.:.'..'..'..Reducedrateex.presswn.......................................................’, ........... .=

TOF [s']

u 223§K

0.01 b e

100 1000
Hydrogen Pressure [Torr]
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High Throughput Multiscale
Model-based Catalyst Design

NH; decomposition

©c o
w

N

NH,+*< NH, *
NH,*+*< NH, *+H*
NH, *+*< NH*+H*

NH *+* < N*+H*

2N*< N, +2*
2H* < H, +2*

Conversion

o
=

o

350 °C
1 atm

Q,, [kcal/mol] a5 Q,, [kcal/mol]

» Search is done on atomic descriptors while running the
full chemistry and reactor models

» QOptimal catalyst properties are identified

Prasad et al., Chem. Eng. Sci. 65, 240 (2010)
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Identifying Blmetalllc Catalvss

.
.
-

Metals BE, (kcal/mol)
PtTiPt 56.5
PtVPt 59.5
PtCrPt 72.6 Surface Sub-surface
PtMnPt 84.9 : : :
ot o | Optimum heat of chemisorption of N of
e .
PtCoPt 87.0 ~130 kcal/mol
PNiPt g9.8 ® NiPtPtis a good prospective bimetallic
NiPtPt 1375 «_ surface
CoPtPt 159.9 150
o (2”—57 1109, Q =131.0£2.9 [keal/mol]

FePtPt 169.9 | =64.30.9, Q, =106.3%2.1 [keal/mol] 15
MnPtPt 162.2 © ‘[\ E

£ ;30 )
CrPtPt 166.5 = 102

Q Addition of Coverage -
VPtPt 184.1 X, 120| Nd 2

= =
TiPtPt 1915 (< J > Z
I >
Pt 102.1 ] - r 0

Ni 1138 — > q, [Kealimoll




Emergent Behavior Veritiec

Experimentally

14 amu

W 3.0 Langmuir NHs
s at 350K at UHV

Ni-Pt-Pt ‘
Pt-Ni-Pt Q

Pt(111)

Intensity (arb. units)

| | | | | | | | |

350 400 450 500 550 600 650 700 750

_ Temperature (K)
» Ammonia decomposes on Ni-Pt

» No decomposition on other surfaces
» N-Pt is the most active catalyst

Hansgen, Chen, and Vlachos, Nature Chem. 2, 484-489 (2010)
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End



