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You searched for: TOPIC: (TiO2 110 surface) –   
Results: 3,551 (from Web of Science Core Collection) 

Ti: 4s23d2  (4 electrons, 6 orbitals) 

O: 2s22p4   (6 electrons, 4 orbitals) 

2(TiO2) – 32 valence electrons 
               28 minimal basis orbitals 
           ~1130 plane waves 

12 filled bands 

12 empty bands 

Hybrid	
  func,onal	
  studies	
  of	
  the	
  oxygen	
  
vacancy	
  in	
  TiO2,	
  A.	
  Jano-,	
  J.	
  B.	
  Varley,	
  P.	
  
Rinke,	
  N.	
  Umezawa,	
  G.	
  Kresse,	
  and	
  C.	
  G.	
  
Van	
  de	
  Walle,	
  PRB	
  81,	
  085212	
  (2010)	
  

Heyd,	
  Scuseria,	
  and	
  Ernzerhof	
  Perdew,	
  Burke,	
  Ernzerhof	
  

4 oxygen 2s bands 
lower in energy 

6-atom tetragonal unit cell 

Example: rutile (TiO2) 

DFT hybrid 



Single-particle ideas and philosophies – converging or diverging? 

1.  Drude, Sommerfeld, Bloch.  Classical, Quantum, free to bound in solid. 
2.  Hartree-Fock; Slater             (average exchange). 
3.  Interacting many-body theory: 
         Single-particle Green’s function; Landau theory; “GW” approximation 
4.  Hohenberg-Kohn-Sham density functional theory (DFT) 

  

€ 

ρ(! r )1/ 3

Single-particle Methods of Solution 

1.  Local orbitals; LCAO-Hückel 
2.  Plane waves 
3.  Augmented plane waves (APW) 
4.  Othogonalized plane waves (OPW) 
5.  Green’s function methods (KKR) 
6.  Pseudopotentials 
7.  PAW Walter Kohn 

Pseudopotentials (~1959) were born before DFT (1964) and remain  
partially independent.  DFT “does” ρ(r).  What do pseudopotentials do? 
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ˆ T (
! 
R )ψ(! r ) ≡ψ(! r +

! 
R ) = exp(i

! 
k ⋅
! 
R )ψ(! r )    (label as ψ ! k ) 

 (eigenvalue of ˆ H  labeled as ε ! k )

  (eigenvalue of translation ˆ T (
! 
R ) is  exp(i

! 
k ⋅
! 
R )

   
! 
k   and  

! 
k +
! 
G  give the same translation eigenvalue.

Bloch’s theorem: can choose eigenstates of a periodic Hamiltonian in the form 

1d free electrons 

1d free electrons with periodicity of k-space (the reciprocal lattice) 

1d single-orbital tight-binding band 
   LCAO:   ψk=Σexp(ikR)φ(r-R)      εk = -2tcos(ka) 
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 ε ! 
k 

= "2k 2 /2m



volume 51 (1937) 

The	
  wave	
  funcPon	
  is	
  expanded	
  in	
  spherical	
  
harmonics	
  and	
  radial	
  soluPons	
  of	
  the	
  wave	
  
equaPon	
  within	
  the	
  spheres,	
  and	
  in	
  plane	
  
waves	
  outside	
  the	
  spheres,	
  joining	
  
conPnuously	
  at	
  the	
  surface.	
  A	
  single	
  
unperturbed	
  funcPon	
  consists	
  of	
  a	
  single	
  plane	
  
wave	
  outside	
  the	
  spheres,	
  together	
  with	
  the	
  
necessary	
  spherical	
  funcPons	
  within	
  the	
  
spheres.	
  ...	
  It	
  is	
  hoped	
  that	
  the	
  method	
  will	
  be	
  
useful	
  for	
  comparaPvely	
  low	
  energy	
  excited	
  
electrons,	
  for	
  which	
  the	
  usual	
  method	
  of	
  
expansion	
  in	
  plane	
  waves	
  converges	
  too	
  slowly.	
  

Augmented Plane Waves (APW) 

students: 

Leland Allen 
Don Ellis 
Art Freeman 
Frank Herman 
George Koster 
Len Mattheiss 
Dick Watson 
John Wood 

Birth of computational electronic structure theory? 



Richard M. Martin, Electronic Structure: Basic 
Theory and Practical Methods Cambridge (2004) 

How many plane waves are needed?  ~(Gmax/Gmin)3 

Crude estimate for s-orbitals: λmin ~ 2aB/Z 
(Gmax/Gmin)3 ~ (Za/2√3aB)3  ~ 71,400 for Si. 

With a smooth pseudopotential, λmin ~ aB works. 
~ 200 plane waves for Si. 

The pseudopotential emerged ~1959 as a related way of reducing the number 
of plane waves needed. 

But it depends on the 
kind of pseudopotential. 



Bloch’s theorem 

“k” is short for              (all the quantum numbers of the state). 
Let there be a “single-particle” Hamiltonian.  Then: 
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! 
k ,n,σ

Most methods of solution expand ψ in a “basis set.”  The simplest 
basis set adapted to Bloch’s theorem is plane-waves. 

This is a Bloch wave, since  
They are complete, orthogonal, and bias-free.   

€ 

exp(i
! 
G ⋅
! 
R ) =1

Need to solve (in a primitive cell): 

Two issues: 
     1. What is H? 
     2. How to solve? 



Dimensionless units 

“Rydberg atomic units” 

“Hartree atomic units” 

In both systems, the unit of length is the Bohr radius: 



Simplified notation; drop the label “k”. 

Determine the expansion coefficients cg  (secular equation.) 
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ψ =
n=1

∞

∑ αn n

This is only one of many matrix versions of the Schrödinger equation 

€ 

n{ }where           is a complete, orthonormal set of states.	
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ˆ H ψ =
n=1

∞

∑ αn
ˆ H n =

n=1

∞

∑ αn E n = Eψ

Left project by	
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m
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n=1

∞

∑ αn m H n =
n=1

∞

∑ αnE m n = Eαm
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" # " !
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Exact version of 
one-electron 
Schroedinger eqn. 
(assuming we know H!) 
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ψ =
n=1

N

∑ αn n

Theorem:  if Hψ=Eψ and we expand ψ in a (finite, truncated) orthonormal basis, 

€ 

δ
δαn

* ψ Hψ − λ ψ ψ[ ] = 0  

then the states that are stationary under variation of all coefficients 

obey the matrix eigenvalue equation 
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Truncated version of the matrix formulation – variational accuracy 
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Basis functions are often not 
orthogonal or normalized. 
This creates a “generalized” 
Hermitean eigenvalue problem. 

Linear algebra methods solve this with little added difficulty.	
  
One approach: 

€ 

ˆ H ψ = E ˆ S ψ  and  φ = ˆ S 1/ 2ψ

→ ˆ H effψ = Eψ  where  ˆ H eff = ˆ S −1/ 2 ˆ H ̂  S −1/ 2
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More annoyingly, efficient basis functions (or a “pseudopotential”) tend 
to be energy-dependent.  Then it is not a linear problem any more.	
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ˆ H (E)ψ = E ˆ S (E)ψ

Solve iteratively? 
Lose nice linear algebra theorems. 
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ˆ H (E)ψ = E ˆ S (E)ψ

Linearized approximations: LAPW (O. K. Andersen), etc. 

€ 

ˆ H (E0 ) − E0[ ]ψ = (E − E0 ) 1+ E0
ˆ ʹ′ S E0

− ˆ ʹ′ H E0[ ]ψ€ 

ˆ H (E) ≈ ˆ H (E0 ) + (E − E0 ) ˆ ʹ′ H E0

ˆ S (E) ≈ ˆ S (E0 ) + (E − E0 ) ˆ ʹ′ S E0

This leads to a generalized linear Hermitean eigenvalue problem: 

and works only in an energy interval around E0. 

The soft letter ell (L):  “linearized” (LAPW)  or “local” (LDA) 



Back to rutile 

4 x 3 oxygen 2p levels 
p(x), p(y), p(z) 
bonded with 2 x 2 Ti Eg levels 
d(3z2-r2), d(3x2-r2), d(3y2-r2) 

Janotti, Varley, Rinke, Umezawa, Kresse, and 
Van de Walle, PRB 81, 085212 (2010) 

Local orbital picture necessary to describe covalent orbital mixing chemistry. 



covalent bonding/anti-bonding splitting. 



“Oxygen vacancies in rutile TiO2 were simulated by removing 
one O atom from a supercell with 72 atoms.” 

12 primitive cells ! 336 orbitals in a minimal basis  

“We used a plane-wave basis set with a cutoff of 400 eV”	
  	
  

400 eV = kmax
2 = (2π/λmin)2 corresponds to a minimum wave-length of 

0.6 Å 

	
  	
  	
  !	
  kmax=5.42	
  a.u.	
  	
  	
  !	
  	
  	
  Vk-­‐space	
  (4π/3)kmax
3	
  =	
  667	
  a.u.	
  

The super-cell has dimensions V = 2a x 2a x 3c = 748 Å3 = 5,055 a.u. 
The Brillouin zone volume  	
  VBZ	
  =	
  (2π)3/V	
  =	
  0.049	
  a.u.	
  

The matrix dimension is Vk-space/VBZ = 13,600 plane waves 
 Plane waves enlarge the basis set by 40  
 and the computer time by (40)3 = 64,000 

“... integrations over the Brillouin zone were perfomed using a 
2 x 2 x 2 mesh of special k points.” 



0 (π/a)(1,0,0) 

Self-consistent potential V(r) depends on charge density ρ(r) 

Discrete k-mesh of special points 
used to evaluate ρ(r). 



Phys. Rev. 116, 287 (1959) 

Conyers Herring 

Birth of the pseudopotential 
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˜ ψ ≡ ψ − i i ψ
i
∑

  

€ 

real wave - function :  ψ(! r ) =
" r ψ

pseudo wave - function :  ˜ ψ (! r ) =
" r ˜ ψ 

€ 

i i
i
∑ is the projection operator that orthogonalizes  

ψ to the (somewhat arbitrary?) states |i>. 

€ 

Hψ = E ψ  defines an effective Hamiltonian ˜ H ˜ ψ = E ˜ ψ .
If H = T +V (V = potential), then ˜ H  = T + ˜ V   ( ˜ V = pseudopotential).

DFT is not yet born.  People were guessing that V “existed” (Slater showed 
how to “guess” it quite well).  Then      is a weaker potential, a non-local 
operator, that also exists and has pseudo-wavefunctions for its solution. 
                           So, brave computational scientist, proceed to guess      ! 

€ 

˜ V 

€ 

˜ V 



Pseudopotential for a problem where the 1-electron potential is “known”: 

	
  	
  –	
  	
  	
  	
  	
  

	
  	
  –	
  	
  	
  	
  	
  

real 
pseudo 

Phillips-Kleinman-Antoncik 

The full self-consistent treatment was not an option until 15 years later.  The 
full apparatus of non-local (and energy-dependent) potentials was over the top. 
Simpler approaches were encouraged. 

R. M. Martin, Electronic Structure ... 

“SL” = semi-local	
  



Phys. Rev. 141, 789–796 (1966)  [cited 1336 times] 

Empirical pseudopotentials 



“Empirical pseudo-potential method” local version 

fcc structure:	
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! a = a 0, 1
2 , 1

2( )     
! 
A = 2π

a (1 11)
! 
b = a 1

2 ,0, 1
2( )     

! 
B = 2π

a (11 1)
! c = a 1

2 , 1
2 ,0( )     

! 
C = 2π

a (111 )
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! 
G 3 = 2π

a (111), 
! 
G 4 = 2π

a (200), 
! 
G 8 = 2π

a (220), 
! 
G 11 = 2π

a (311), 
! 
G 12 = 2π

a (222)
5 smallest reciprocal lattice vector (RLV) types 
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! 
k V
! 
k +
! 
G 3 = V (|

! 
G 3 |) ≡V3matrix elements are the same for all 12 vectors 

Diamond structure: fcc with a basis of two identical atoms at locations τ1 and τ2.. 
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! 
k V
! 
k +
! 
G = V (

! 
G )S(

! 
G ) where S(

! 
G ) = ei

! 
G ⋅ ! τ 1 + ei

! 
G ⋅ ! τ 2( ) /2
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 S(
! 
G 4 ) = S(

! 
G 12) = 0 Three numbers (V3, V8, V11) give a “good”  

band structure for C, Si, Ge, Sn. 

Note – destructive interference kills structure factor S(G) for certain G’s. 
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Empirical pseudopotentials are 
adjusted until theory “agrees” 
with optical experiment. 

There are aspects of experiment 
lying outside “quasi-particle theory:” 
excitonic effects, for example. 
Two particle Green’s function, 
Bethe-Salpeter equation. 



James R. Chelikowsky and Marvin L. Cohen 
Nonlocal pseudopotential calculations for the  
electronic structure of eleven ....conductors 
Phys. Rev. B 14, 556–582 (1976)  

empirical nonlocal pseudopotential (solid line) and  
empirical local pseudopotential (dashed line). 

a0 = 5.43 Å 

2 atoms/cell, 4 valence electrons ! 4 occupied bands. 

“Indirect band gap” 
Eg ~ 1.1 eV 
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predicted electron quasiparticle energy 

valence bands 
conduction bands 

This is a wonderful way to study bulk solids – supplemented by chemical local basis insights. 



Around 1980, self-consistent calculations had become attainable. 
“Ab initio” (i.e. non-empirical, no adjusting) had become desirable. 

Why?  It worsened quasiparticle properties.   
           The “band-gap problem” emerged with ab initio theory. 

Answer: surface physics! 

DFT promises ground state properties, especially total energy – 
These had not been the target of previous semi-empirical approaches.   



Phys. Rev. Lett. 37, 1632 (1976) 



Phys. Rev. B26, 5668 (1982) 

Benefit of “ab initio”: total energy 



Note:  We are no longer assuming we “know” V; 
we claim that Hohenberg-Kohn-Sham theory 
has taught us how to construct V. 

[More accurately, has given us license to invent ways to construct V.) 

Previous view: H = T + Vpseudo.  At 
large distances, it must equal  
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Vpseudo(q) = −
4πZvalencee

2

ε (q)q2
→ 2

3ε Fermi
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V (! r ) = −
Ztote

2

! r 
+ d3 ʹ′ r ∫ ρtot (

! 
ʹ′ r )

! r − ! ʹ′ r 
+VXC ρtot[ ]

ρtot (
! r ) = ψ i (

! r ) 2

i

tot, occupied

∑

  

€ 

˜ V (! r ) = −
Zvalencee

2

! r 
+VNLcorr + d3 ʹ′ r ∫ ρvalence(

! 
ʹ′ r )

! r − ! ʹ′ r 
+VXC ρvalence[ ]

ρvalence(
! r ) = ˜ ψ i (

! r ) 2

i

valence, occupied

∑

“all electron” DFT 

“Valence only” DFT 

The pseudopotential allows wavefunctions to behave smoothly 
in the core region, but self-consistent screening is NOT contained 
in this pseudo part; it changes with environment. 



Phys. Rev. Letters 43, 1494 (1979) 

Phys. Rev. B 26, 4199 (1982) 

“Transferable” (at a cost: 
more plane waves than would 
be needed to fit only the  
valence region. 



Kari Laasonen, Roberto Car, Changyol Lee, and David Vanderbilt,  
Implementation of Ultra-Soft Pseudopotentials in Ab-initio 
Molecular Dynamics, Phys. Rev. B 43, 6796 (1991)  



Phys. Rev. B 50, 17953 (1994) 



M. Shishkin and G. Kresse, Phys. Rev. B 75, 235102 (2007)  
Self-consistent GW calculations for semiconductors and insulators 



Thank you to all my electronic structure collaborators, especially 

Marvin Cohen 
Warren Pickett 
Bill Butler 
Jim Davenport 
Mike Weinert 
Renata Wentzcovitch 
Mark Hybertsen 
Jim Muckerman 
Marivi Fernandez-Serra 
Artem Oganov 

and Manuel Cardona, who watched me do one by myself. 


