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You searched for: TOPIC: (TiO2 110 surface) - . .
Results: 3,551 (from Web of Science Core Collection) Example: rutile (TiO,)

Hybrid functional studies of the oxygen
vacancy in TiO, A. Janotti, J. B. Varley, P.
Z Rinke, N. Umezawa, G. Kresse, and C. G.
A Van de Walle, PRB 81, 085212 (2010)
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,:/F‘:"——z Ti: 4523d? (4 electrons, 6 orbitals)

/’ | O: 2s22p* (6 electrons, 4 orbitals)

S Bl 2(TiO,) - 32 valence electrons

28 minimal basis orbitals

~1130 plane waves
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Single-particle ideas and philosophies - converging or diverging?

1. Drude, Sommerfeld, Bloch. CIassucal Quantum, free to bound in solid.
2. Hartree-Fock; Slater p(F)" (aver'age exchange).
3. Interacting many-body theory:

Single-particle Green's function; Landau theory; "GW" approximation
4. Hohenberg-Kohn-Sham density functional theory (DFT)

Single-particle Methods of Solution

Local orbitals; LCAO-Hiickel
Plane waves

Augmented plane waves (APW)
Othogonalized plane waves (OPW)
Green's function methods (KKR)

. Pseudopotentials

PAW Walter Kohn

NOOTh W

Pseudopotentials (~1959) were born before DFT (1964) and remain
partially independent. DFT “does” p(r). What do pseudopotentials do?



Bloch's theorem: can choose eigenstates of a periodic Hamiltonian in the form

T(Ry(F) =y(F + R) =exp(ik - Ryy(¥) (label as y.)
(eigenvalue of H labeled as £:)

(eigenvalue of translation T(R) is exp(ik - R)

k and k + G give the same translation eigenvalue.
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PHYSICAL REVIEW
volume 51 (1937)
Wave Functions in a Periodic Potential

J. C. SLATER* .

Augmented Plane Waves (APW)

The wave function is expanded in spherical
harmonics and radial solutions of the wave
equation within the spheres, and in plane

waves outside the spheres, joining students:
continuously at the surface. A single
unperturbed function consists of a single plane Leland Allen
wave outside the spheres, together with the Don Ellis
necessary spherical functions within the Art Freeman
spheres. ... It is hoped that the method will be Frank Herman
useful for comparatively low energy excited George Koster
electrons, for which the usual method of Len Mattheiss
expansion in plane waves converges too slowly. Dick Watson
John Wood

Birth of computational electronic structure theory?



The pseudopotential emerged ~1959 as a related way of reducing the number
of plane waves needed.

Richard M. Martin, Electronic Structure: Basic
Theory and Practical Methods Cambridge (2004)

How many plane waves are needed? ~(6,,../Gnin)?
Crude estimate for s-orbitals: A, ~ 2az/Z
(Grax/Grin)® ~ (Za/2J3ap)® ~ 71,400 for Si.

With a smooth pseudopotential, A, ~ ag works.
~ 200 plane waves for Si.
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Figure 11.2. Schematic example of a valence function that has the character of a 3s orbital near
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Bloch's theorem W (7 + ﬁ) = (?Z'E'I?zf-'}k(]?)

"k" is short for k,n,0 (all the quantum numbers of the state).
Let there be a "single-particle” Hamiltonian. Then:

Need to solve (in a primitive cell):  H1), = €1

Two issues:
1. What is H?
2. How to solve?

Most methods of solution expand vy in a "basis set." The simplest
basis set adapted to Bloch's theorem is plane-waves.

U (7) = E Ck(G)e"'("’+G)-'r
G
This is a Bloch wave, since exp(iG ‘R)=1
They are complete, orthogonal, and bias-free.




Dimensionless units

"Rydberg atomic units" h = e / \/Z =2m =1
“"Hartree atomic units” h =¢e¢ =m =1

In both systems, the unit of length is the Bohr radius:

ap = h?/me* = h*/(2m)(e*/2) = 1



Simplified notation; drop the label "k".

g
Determine the expansion coefficients ¢, (secular equation.)




This is only one of many matrix versions of the Schrédinger equation

Y = 2 (xn‘n> where {‘n>} is a complete, orthonormal set of states.
n=1

Left project by <m‘ E an<m‘H‘n>=i o E<m‘n>=Ea

n=1 n=1
/<1‘H‘1> <1‘H‘N> ---V(xl\ (al\ Exact version of
. . . . . one-electron
: - : I | I gl Schroedinger eqn.
<N‘H‘1> <N‘H‘N> | ay B a, (assuming we know H!)
| SN




Truncated version of the matrix formulation - variational accuracy

Theorem: if Hy=Ey and we expand v in a (finite, truncated) orthonormal basis,

0,
Y=Y a,ln)

then the states that are stationary under variation of all coefficients

O [wlHiw) - 2plw)] =0

*
oo,

obey the matrix eigenvalue equation

(Y N @) ()

(NIH|Y) - (NHIN)\e, ) \a,)



Basis functions are often not
orthogonal or normalized. :
This creates a "generalized"” H =FES
Hermitean eigenvalue problem. a, oy
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Linear algebra methods solve this with little added difficulty.
One approach:

Hy =ESy and ¢=S"*y
— f]effw = Ey where ﬁ]eff =S2HST?




More annoyingly, efficient basis functions (or a "pseudopotential”) tend
to be energy-dependent. Then it is not a linear problem any more.

H(E)

(a,)

= ES(E)

[, )

Solve iteratively?
Lose nice linear algebra theorems.

H(E)|y) = ES(E)|y)



H(E)|y) = ES(E)|y)

Linearized approximations: LAPW (O. K. Andersen), etc.
H(E)=~H(E,)+(E-E)H,
S(E)=S(E,)+(E -E,)S;,

This leads to a generalized linear Hermitean eigenvalue problem:

[I:I(Eo)_Eo]‘w> =(E _Eo)[l + EOS'}’EO - FI}ZO]

)

and works only in an energy interval around E,,.

The soft letter ell (L): “linearized” (LAPW) or “local” (LDA)



Janotti, Varley, Rinke, Umezawa, Kresse, and
Back to rutile Van de Walle, PRB 81, 085212 (2010)

4 x 3 oxygen 2p levels

p(x), p(y). p(z)

bonded with 2 x 2 Ti E, levels
d(3z2-r?), d(3x2-r?), d(3y -r?)

Local orbital picture necessary to describe covalent orbital mixing chemistry.



Crystal field splitting

covalent bonding/anti-bonding splitting.
In a crystal, crystal field is usually more
important than the LS coupling

Lower

Energy .-;‘
Levels dxy &

Higher .t
Energy @~
Levels g2 v: @

dy d xz ‘!\':

Different symmetries would have
different splitting patterns




"Oxygen vacancies in rutile TiO, were simulated by removing
one O atom from a supercell with 72 atoms."

12 primitive cells >(336 orbitalg in a minimal basis

"We used a plane-wave basis set with a cutoff of 400 eV”

400 Aev = Kyox® = (271/M0)? corresponds to a minimum wave-length of
0.6

2 Kpa=5-42 8.0 2 V) o (d/3)k 2= 667 a.u.

maXx

The super-cell has dimensions V = 2a x 2a x 3¢ = 748 A3= 5,055 a.u.
The Brillouin zone volume Vg, = (271)3/V = 0.049 a.u.

The matrix dimension is Vi _gqc./Vaz 13,600 plane waves
Plane waves enlarge the basis set by 40

and the computer time by (40)3 = 64,000

"... integrations over the Brillouin zone were perfomed using a
2 x 2 x 2 mesh of special k points.”



Self-consistent potential V(r) depends on charge density p(r)

0 | , (n/a)(1,0,0)

Discrete k-mesh of special points
used to evaluate p(r).



Birth of the pseudopotential
New Method for Calculating Wave Functions in Crystals ang Molecules

~

173

James C. Pumoripst ANp LeEONARD KLeINMAN]
Department of Physics, University of California, Berkeley, California

Phys. Rev. 116, 287 (1959)

T National Science Foundation Postdoctoral Fellow.
T National Science Foundation Predoctoral Fellow.
1 C. Herring, Phys. Rev. 37, 1169 (1940).
2V. Heine, Proc. Roy. Soc. (London) AZ40, 340 (1957).

8 F. Herman, Phys. Rev. 88, 1210 (1952); 93, 1214 (1954).
4 J. C. Slater, Phys. Rev. 92, 603 (1953).

We begin by
imagining that we know the exact crystal wave function
Y. which transforms according to an irreducible repre-
sentation of the cubic point group I', which has s or p
atomic symmetry.” Since ¥, must be orthogonal to the
core states of similar symmetry, we have

¢a= §0a+2n @*Pa™, (21)

ap*=— (Som(»aan)- (2°2)

[ —

If we had chosen ¢ to be a single plane wave Herring’s' [l th‘
results would follow.

Institute of Physics

Conyers Herring



real wave - function : yY(r) = <17 \l/}>

pseudo wave - function : (7) = (F|¢)

) = E\

E ‘i j| s the prOJecflon operator that orthogonalizes
Y to the (somewhat arbitrary?) states |i>.

H|y) = E|y) defines an effective Hamiltonian H{) = E1.
If H=T+V (V =potential), then H =T +V (V = pseudopotential).

DFT is not yeT born. People were guessing that V "existed" (Slater showed

how to "quess” it quite well). Then V is a weaker potential, a non-local

operator, that also exists and has pseudo-wavefunctions for its solution.
So, brave computational scientist, proceed to guess V |




R. M. Martin, Electronic Structure ...

Pseudopotential for a problem where the 1-electron potential is "known":

Hyl(r) = [ - V2 + V(r)] el yl(r)
real
":II)KA,J/;*(I.) — [ . VZ + f/]

pseudo
Phillips-Kleinman/Antoncik

PEY v DR PRI =) () — &) (I Y @)

The full self-consistent treatment wasmnot an option until 15 years later. The
full apparatus of non-local (and enérgy-dependent) potentials was over the top.
Simpler approaches were encouraged.

"SL" = semi-local {/SL — Z I Ylm) VI(")<YIM '

Im



Band Structures and Pseudopotential Form Factors for Fourteen Semiconductors
of the Diamond and Zinc-blende Structures®

MarvIN L. CoHEN] AND T. K. BERGSTRESSER
Department of Physics, University of California, Berkeley, California

Phys. Rev. 141, 789-796 (1966) [cited 1336 times

7 7 T Si— . v
6- e toe R W3
s spe 3k
4 4 2
3 3 |
2 20 zo0
-1
> S I - wWelr
) E 0 Tis -2
Y Wl -3 T
=17 L X T
-2
2 k
-3
-4 - 3 4
. = v v » ) 1 )
o e . K X K l‘ 10
Empirical pseudopotentials ;
1 structure of InP.
8
7 C T y T T %
7 6 4 Ga As A NN N o = 7
6 sho ) b 3
Ky o S 5
3L 4f- "~ : . 2 5
4 3 4
3 2 3 3
2 - T 2 2
~ 1 > ¢ -
z! 2o ! ' -
; 0 u",, o 0 w ©
y -2 -1 -
2= N ) -2
-3 -4 -3 -3
-4 L
-5
9
7 7 .
6 6 6
5 Us
5 .x 5 3
4 3 4 5
: 2 ; ‘
- s i 3
Tt 2 o} > 2= 4
=0 w 2o -
s B w 2 b
2+ =1 : Of=
-2 " -2 -1FG T Kz -
: “a -3 -2}~ ok, i,
) - P -4 -3 | L
C X K T

F16, 6, Band structure of AlSh,

Fic. 3. Band structure of Sn.

Fi6. 9. Band structure of InAs, Fi6. 12, Band structure of ZnSe.



"Empirical pseudo-potential method” local version

a(o ! 1) A=2"(T11)

QI
Il

’2°2
fcc structure: 7 1l S 2T
b=a(30.1) B=2201T1)
c=da(1.50) C=2a1T)

5 smallest reciprocal lattice vector (RLV) types
G, =22(111), G, =22(200), G, = 22(220), G,, = 22 (311), G, = 22 (222)

matrix elements </€‘V‘lz + G3> =V(l 63 ) =V, are the same for all 12 vectors

Diamond structure: fcc with a basis of two identical atoms at locations t; and ...

<1’é ‘V‘l_é + (;> - V(G)S(G) where S(G) = (e"é‘fl + /0T )/2

Note - destructive interference kills structure factor S(G) for certain G's.

S ((_;4) =3 ((_;12) =0 Three numbers (V5, Vg, V) give a “good”
band structure for C, Si, Ge, Sn.




Empirical pseudopotentials are
adjusted until theory "agrees"”
with optical experiment.

1.0 — -
— EI + Eo‘—‘"”L
There are aspects of experiment r Si
lying outside "quasi-particle theory:" °'5|
excitonic effects, for example.
Two particle Green's function, O —
Bethe-Salpeter equation.
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'H. R. Philipp and H. Ehrenreich, Phys. Rev. 129,  Cohen, Solid State Commun. 8, 627 (1970).
1550 (1963).



James R. Chelikowsky and Marvin L. Cohen
Nonlocal pseudopotential calculations for the

electronic structure of eleven ....conductors
Phys. Rev. B 14, 556-582 (1976)

2 atoms/cell, 4 valence electrons - 4 occupied bands.
4

4

Ly
2k

empirical nonlocal pseudopotential (solid line) and
empirical local pseudopotential (dashed line).

L A r a X UK I r

FIG. 5. Valence charge density as determined by
Yang and Coppens (Ref. 9) from x-ray experimental data.
(b) Valence charge density as calculated by a nonlocal
pseudopotential. In both cases the contours are in
units of ¢/, .



This is a wonderful way to study bulk solids - supplemented by chemical local basis insights.
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Around 1980, self-consistent calculations had become attainable.
"Ab initio” (i.e. non-empirical, no adjusting) had become desirable.

Why? It worsened quasiparticle properties.
The "band-gap problem” emerged with ab initio theory.

Answer: surface physics!

DFT promises ground state properties, especially total energy -
These had not been the target of previous semi-empirical approaches.



Chemisorption-Site Geometry from Polarized Photoemission: Si(111)Cl and Ge(111)CI+

M. Schluter, J. E. Rowe, and G. Margaritondo*
Bell Labovatories, Muvrvay Hill, New Jersey 07974

and

K. M. Ho and Marvin L. Cohen
Physics Department, Universily of Californai, Bevkeley, Califovnia 94270, and Moleculay and Matevials
Research Division, Lawvrence Bevrkeley Labovatory, Berkeley, Califoynia 94270

Phys. Rev. Lett. 37, 1632 (1976)
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Valence charge density (110 plane)

Benefit of “ab initio": total energy

Theory of static structural properties, crystal stability,
and phase transformations: Application to Si and Ge

M. T. Yin* and Marvin L. Cohen :

Department of Physics, University of California, Berkeley, California 94720 /\?/ /\/ N 7\/
and Materials and Molecular Research Division, Lawrence Berkeley Laboratory, / \ /\/
Phys. Rev. B26, 5668 (1982) —
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using a plane-wave basis set with a kinetic-energy
cutoff (E ) of 11.5 Ry at which point the overall
convergent error of eigenvalues is about 0.05 eV.



Note: We are no longer assuming we “know" V;
we claim that Hohenberg-Kohn-Sham theory
has taught us how to construct V.

[More accurately, has given us license to invent ways to construct V.)

- E¢

Crystal potential

N SCREENED ION LIMIT
FOR METALS

Via) Vir) ~/ Vl{a)e'% dq
~ i/ BOND lENG,’”’;:,H L Previous view: H= T + V.. .. AT
>4 large distances, it must equal
1% /4 e’
V — _ valence ‘e ‘
pseudO(Q) g(q)qz 3 ¥ Fermi

Viq-=G; FOR TYPICAL G's



- tot tot (l’")
“all electron” DFT V(¥) = +fd3 p ‘ VXC[ptot]

tot, occupled

ptot(;:) = E‘wl(F)‘z
"Valence only” DFT

~ 7/ '
V(F) —(_ valence + d3 ,pvalence(r)

7 P -7

+ Ve [ Pyatence ]

valence, occupied

- ~ |2
pvalence(r) = E I/JI(”)‘
i
The pseudopotential allows wavefunctions to behave smoothly

in the core region, but self-consistent screening is NOT contained
in this pseudo part; it changes with environment.




Norm-Conserving Pseudopotentials

D. R. Hamann, M. Schluter, and C. Chiang
Bell Labovatovies, Muvray Hill, New Jevsey 07974

Phys. Rev. Letters 43, 1494 (1979)

06

¢(r)-r

v}"tr)(o.u.)

"Transferable” (at a cost:

more plane waves than would
be needed to fit only the
valence region.

o8 Pseudopotentials that work: From H to Pu

G. B. Bachelet,* D. R. Hamann, and M. Schluter
Bell Laboratories, Murray Hill, New Jersey 07974

Phys.

Rev. B 26, 4199 (1982)
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FIG. 3. Ion-core pseudopotentials for aluminum.



Kari Laasonen, Roberto Car, Changyol Lee, and David Vanderbilt,
Implementation of Ultra-Soft Pseudopotentials in Ab-initio
Molecular Dynamics, Phys. Rev. B 43, 6796 (1991)
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FIG. 1. Total energy of ground-state oxygen atom vs plane-
wave -cutoff for Bachelet-Hamann-Schliter pseudopotential

(open circles) and for Vanderbilt pseudopotential with r. =1.2
a.u. (solid squares) and r. =1.8 a.u. (open triangles).



Phys. Rev. B 50, 17953 (1994)

Projector augmented-wave method

P. E. Blochl
IBM Research Division, Zurich Research Laboratory, CH-8803 Rischlikon, Switzerland
(Received 13 June 1994; revised manuscript received 22 August 1994)

An approach for electronic structure calculations is described that generalizes both the pseu-
dopotential method and the linear augmented-plane-wave (LAPW) method in a natural way. The
method allows high-quality first-principles molecular-dynamics calculations to be performed using
the original fictitious Lagrangian approach of Car and Parrinello. Like the LAPW method it can be
used to treat first-row and transition-metal elements with affordable effort and provides access to the
full wave function. The augmentation procedure is generalized in that partial-wave expansions are
not determined by the value and the derivative of the envelope function at some muffin-tin radius,
but rather by the overlap with localized projector functions. The pseudopotential approach based
on generalized separable pseudopotentials can be regained by a simple approximation.



M. Shishkin and G. Kresse, Phys. Rev. B 75, 235102 (2007)
Self-consistent GW calculations for semiconductors and insulators

Theory (eV)
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Thank you to all my electronic structure collaborators, especially

Marvin Cohen

Warren Pickett

Bill Butler

Jim Davenport

Mike Weinert

Renata Wentzcovitch
Mark Hybertsen

Jim Muckerman

Marivi Fernandez-Serra
Artem Oganov

and Manuel Cardona, who watched me do one by myself.



