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Density functional theory
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Walter Kohn

Nobel Prize in Chemistry 1998
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The fundamental laws necessary for the mathematical
treatment of large parts of physics and the whole of chemistry
are thus fully known, and the difficulty lies only in the fact that
application of these laws leads to equations that are too
complex to be solved.

) (")

----- Paul Dirac

The density of particles in the ground
state of quantum many body system
is a basic variable, i.e., all properties
of the system can be considered
unique functionals of the ground
state density.

The Kohn-Sham ansatz assumes
that the ground state density of

the original system is equal to an
auxiliary non-interacting system.

P. Hohenberg and W. Kohn, Phys. Rev. B, 136: 864, 1964.

W. Kohn and L. Sham, Phys. Rev. A, 140: 1133, 1965.




Hohenberg-Kohn theorem |

Theorem |: For any system of interacting particles in an external
potential V_.(r), the potential V_.(r) is determined uniquely,
except for a constant, by the ground state particle density ng(r).




Proof of theorem |

Assume two external potentials, V.., (r) and V2 (r), exist that differ by

ext

more than a constant and correspond to the same GS density.

O A0 — O
ext (7") nd nd \ n (7")
VO(r) = H® = g® —

ext

Assume the ground state is not degenerate. Variational principle
dictates O _ <1p<1> ﬁ(l)‘ma>> - <q;(2> ﬁ(l)‘\y(z)>

E® _ <‘P(2) ﬁ(Z)‘qj(Z)> < <‘P(” ﬁ(z)‘q;<1)>

Rewrite the last term:

ext ext

(@ EO ) = @@ EO W) + [ a7 [V - V)] no(?
@OLEO ) = @OEOO) + [ [V - V)] no(d)

ext ext

Add them together: EL 4+ @ @ 4 gQ1)



Hohenberg-Kohn theorem |

Theorem I: For any system of interacting particles in an external
potential V_.(r), the potential V_.(r) is determined uniquely,
except for a constant, by the ground state particle density n,(r).

Corollary I: Since the Hamiltonian is fully determined, expect for
a constant shift of the energy, it follows that the many-body
wavefunctions for all states (ground and excited) are determined.
Therefore all properties of the system are completely
determined given only the ground state density ny(r).

ny(r) =V, (r) = H




Hohenberg-Kohn theorem Il

Theorem II: A universal functional for the energy E[n] in terms
of the density n(r) can be defined, valid for any external
potential V_,(r). For any particular V_(r), the exact ground state
energy of the system is the global minimum value of this
functional, and the density n(r) that minimizes the functional is
the exact ground state density ny(r).

variaitonal principle

Universal E[n(r)] - no(r)

minimization

@U




Proof of theorem Il

HK1:  n(r) = V(r) = H= E[n]

n n, ng n, nc

V-representable

For a given H, all properties, such
as kinetic energy and interaction
energy are uniquely determined.

no(r) = V. () =H and H=W¥

h’ >

__Evj
62

Eint= IP%E ‘P =>Eint[n]

‘I’> = T[n]

E,.[n] EFHK[n]+fd3r V. .(r)yn(r)+E, where

F In]l=T[n]+E.

nt



Proof of theorem I

Consider ground state density n)(r) corresponding to V_,.Y(r).
The ground state wavefunction of HY) can be solved as W), |t

follows that

ED _ <1p(1) ‘ H(l)“{'(l)> —E. [n"]
HK
Now consider a different wavefunction W1) and density n(2)(r)

ED _ <‘P(1) ‘ H(l)‘qj(n> < <q;(2> ‘ H(”‘lp(z)> _E®

The density n(r) that minimizes the functional is the exact
ground state density n,(r).



Hohenberg-Kohn theorem Il

Theorem II: A universal functional for the energy E[n] in terms
of the density n(r) can be defined, valid for any external
potential V_(r). For any particular V_(r), the exact ground state
energy of the system is the global minimum value of this
functional, and the density n(r) that minimizes the functional is
the exact ground state density ng(r).

Corollary Il: The functional E[n] alone is sufficient to determine
the exact ground state energy and density. In addition, thermal
equilibrium properties, e.g., specific heat, are determined
directly by the free-energy functional of the density.




Extensions of HK theorems

> Spin density functional theory
> Spin polarized systems
> Zeeman effect: H=H,+V  with V =-u-B

E=E,[n,s] where n(r)=n(r,o="1)+n(r,o=\)

S(r)=n(r90=T)_n(Faa=J/)
> Time-dependent density functional theory
(TDDFT)

“Given the initial wavefunction at one time, the

evolution at all later times is a unique functional of the
time-dependent density”, i.e., n(r) = n(r,t).

> Extension of HK to the time domain

> A formal theory to study excitations
Runge and Gross, Phys. Rev. Lett., 52: 997-1000, 1984.



Summary of HK theorems

2

Interacting particles in 2 e
5P H=-§7EV?+EVW(6>+%E—

an external potential: - "j‘

i# J

Hohenberg-Kohn theorem I: ny(r) = V(1)
Hohenberg-Kohn theorem Il: ~ 8E(n) /dn| ,=0

W({ry,ry, ..., r}) = ngy(r)

The HK theorems reformulate the problem of many interacting
particles in terms of a functional of the ground state density.
However, the exact form of the functional is unknown.



Hohenberg-Kohn theorems

o o . h2 1 2
Interacting partlcle.s in . _ __Eviz N _E e
an external potential: 2m 24—,
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W({7}) > n(F)

Hohenberg-Kohn theorem I: ny(r) = V(1)
Hohenberg-Kohn theorem Il: ~ 8E(n) /dn|,,=0

Vﬁf) < — n}(\f)
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Homogeneous Electron Gas

kF — (33172)1/3 (n)1/3 or k? _ (6.77:2 )1/3 (no' )1/3

Table 5.2. Characteristic energies for each spin o for
the homogeneous electron gas in the Hartree-Fock
approximation: the Fermi energy E7,: Kinetic energy
Ty and Hartree-Fock exchange energy per electron
E7 which is negative; and the increase in band width
in the Hartree—Fock approximation A Wyga.

Quantity Expression Atomic units
E° .!_:_ ke 2 1 ke P4
Fo z..,( ¥) E( )
3 3
Iy sEF sEF

—F° 3 Lo Y
E_: i kf 4;‘!‘



Thomas-Fermi-Dirac approximation:
Example of a functional

> Local approximation
n=n(r) r.=r(r) k,=k.(r)

> TF functional

3 5/3 3
ETF[n]=\C1fd 1; n(r) ’+fa’ rV, (r)n(r)
+C f/dg; n(r)* +1 [ & rdr )
2 2 '
e | r-r,

V4 \ S
7 N S

r'S N “~
%\ ~a
Kinetic energy Local exchange energy Hartree energy

~ kg2 per electron ~ ke per electron



Minimize TFD functional against n(r) subject to the constrain
of total number of electrons:

fd3r n(r)=N.

The solution can be obtained from unconstrained minimization
of the new functional,

Q. [n]= ETF[n]—,u{fcfr n(r)—N},

where the Lagrange multiplier u is the Fermi energy.
The variational principle requires 6Q,,.[n]/dn=0.

0Q,[n]= [ d?’r{%qn(r)% +V, (N+4Cn(n)" + [d'r \:(r,r')'\ - u}én(r)
\ i}
v

Vi (1)

TF variational equation:

2/3
137%) () + V(N -u=0 ‘




TF approximation

> Truly a density functional

> Weizsacker gradient correction
LT () /n7(r)  or  F(Vn(r)*/n”(r)

C. F. von Weizsacker, Z. Phys. 96: 431, 1935

> TF in practice
> The approximations are too crude

> Missing essential physics and chemistry, e.g., shell
structure of atoms and binding of molecules



Hartree approximation

{—1 VA +’UH(7‘)} p;i(r) = €50;5(7)

AN

vg(r) = =2 /|7~-2 Idr

N

Z: (PJ(T

A set of self-consistent
single particle equations
to treat atoms

Kinetic energy derived
from the non-interacting
system

Much better description
of the atomic ground
state than TF

D.R. Hartree, Proc. Camb. Phil. Soc. 24, 89 (1928), F. Fock, Zs. f. Phys., 61, 126 (1930).



Early DFT practice: TFD and Hartree App.

e Truly a density functional

2\?3 2/3 * One equation solves the
‘%(371 ) )™+ Ve (r) - u =O‘ densit?/
’ ) \ * It does not give the
s, n(r') 3 correct shell structure of
ext(r)-l_fd | +3C,n(r) atoms and binding of
|r r | molecules

{_% v2 +vy(r)} on('r) = Cj(,oj("') * A set of self-consistent

single particle equations to
i

- treat atoms
[ [
A A n(r’) , * Kinetic energy derived
vg(r) = . ea 7 — 1 IdT' from the non-interacting
system
V.

Much better description of

the atomic ground state

N
Z Pj (T‘ than TF




The Kohn-Sham ansatz

* Replace the original many-body problem by
an auxiliary independent-particle problem

— The ground state density is required to be the
same as the exact density

ny(r)= 3 D (]

— A self-consistent method

— Easy to solve



The Kohn-Sham ansatz

* There is no rigorous proof for real systems.
— Weakly correlated systems
— Strongly correlated systems

* In principle the solution of the auxiliary independent
particle system determines all properties of the full
many-body system.

V(7)< (7)o 1,(F) 2 V()

U T 1 $

W, ({7}) WY Yy () . (F)




Kohn-Sham energy functional

(r) n(r)+ E,

artree

In]+E, +E |n]

ext

E [n]=T[n]+ f d’rv

where

1 oS/ o
Tin) === 3 DV

o i=l

Vlur)=5 32 e ivur]

o i=l

1 N
EHartree[n] = Efd3l"d3l" ‘I" _ I""

All the many-body effects are embedded in E,_[n], whose
exact expression is unknown.




Kohn-Sham variational equation

T.is a functional of ¢ and all other terms are functionals of
density. One can apply variational principle to ¢/ °

OE . /oy’ (r)=0

. . . (0}
under the orthonormalization constrains <?/J,-

0 1Exs — S?E«U}io
L ]

Y7 )= 8,0, ) 1 =0

Using the results

STy | Sy (r) = —%Vzwf (r) and 6n° (r)/ Sy (r) =y (r),



Kohn-Sham variational equation

the Kohn-Sham equation is derived as:

‘(H;;S — e )y () = o,‘

where
Hi (1) ===V + Vi (1)
and
Vis(r) =V, (r) + gf(’;;) + 5:53“; )
= Vo 1)+ Vitarree (1) + V, (7).

OF, has to be approximated!

o on(r,o)




Local density approximation

* Approximation to E, _[n] requires information from
reference many-body systems of interacting electrons

* Local density approximation (LDA)

E _[n]= fd3r n(r) e ([n],r)

oF  ([n],r) _ og, ([n],r)
Sn(r) =&, ([n],r)+n(r) Sn(r)

V (r)=

* Approximate g based on HEG

e ([nl,r) =& ([n],r)+&°([nl,r)



Exchange correlation in HEG

=

S

* Solvable model ( 3 )1/3
4n

3 9Jl’ 1/3

™ (r)=- ( ) r known exactly
4}31 4

a,

a, . d;

+ +
£9 () — < . P22

Cc A S A

0311In(r,)-0.048+r,(Aln(r,)+C)+--

+--+  low density

high density: perturbation theory fails

* |n between, the correlation energy is obtained by
fitting to the QMC data of Ceperley-Alder (1980).



Local spin density approximation

Functional of n(r), fully local:

Exll,SDA[nT,nl]=fd3l’ n(r) e (n'(r),n(r))

Define

1 | & n —n
n=n+n',; =

v

e (n,C)=¢_(n,0)+[e (n,1)-¢ (n,0)]f (E)

fully polarized unpolarized

£.(n,8)=¢.(n0)+[e (n,1)-¢£.(n,0)]f (C)

* Different parameterizations in use:

— PW92, Perdew and Wang, Phys. Rev. B 45, 13244 (1992)

— PZ, Perdew and Zunger, Phys. Rev. B 23, 5048 (1981)

—VWN (SVWNS5), S. H. Vosco, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980)
* See Appendix B1 of R.Martin's “Electronic Structures” for analytic forms for €_.
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Typical errors for atoms, molecules, and solids

J. Perdew and S. Kurth, “Density Functionals for Non-relativistic Coulomb Systems
in the New Century” (2003)

Property LSD
Ey 5% (not negative enough)
E. 100% (too negative)
| bond length 1% (too short) |
structure overly favors close packing
|(,?11(,?1‘g)~’ barrier 100% (too l(_)w_)l

Despite being a relatively small fraction of E, ,, E, . contributes significantly
(about 100%) to the chemical bonding or atomization energy.

E, is much larger than E_ - error cancellation in prediction of E,_ (5-10%).
Small errors in bond length: Geometry and vibration (phonons) are usually
good.

Large errors in energy barrier and dissociation energies: Not good for
thermochemistry.



The zoo of exchange-correlation functionals
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Local density app.
Generalized gradient app.
Hybrid functional

Over the last a few decades, hundreds of exchange-correlation functionals have
been developed, which contribute to the so-called “zoo” or “soup” of density
functionals. One lacks procedures for systematically improving the functionals.



Generalized gradient approximation (GGA)

Functional of n(r) and |V n(r)|, semilocal

Ei’f’A fd rn(r)e (n', P
., _ OEx[n] _ V. OExc|n]
Vie[n(r)] = on(r) v d(Vn(r))

Use exact conditions to constrain construction
— PW91, PBE (non-empirical), B88, BLYP (empirical)

— Accuracy (for chosen sets) versus transferability (outside the
sets)

— See Appendix B2 of R.Martin's “Electronic Structures” for
analytic forms of PBE



Comparison of LSDA and GGA

Typical errors for atoms, molecules, and solids

Property LSD GGA

Ex 5% (not negative enough) 0.5%

Er' _ , y - .. . 5(%‘;

|l_)on(l length 1% (too short) 1% (too long)l
structure overly favors close packing more correct

nergy barrier 100% (too low) 30% (too low

Mean absolute error of the atomization energies for 20 molecules

Approximation Mean absolute error (e¢V)
LSD 1.3 (overbinding)

GGA 0.3 (mostly overbinding)
Desired “chemical accuracy” 0.05

J. Perdew and S. Kurth, “Density Functionals for Non-relativistic Coulomb Systems in
the New Century” (2003)



Example: Ground state of solid Fe

40
Experiment
o FM
e BCC 30 -
SDA & ,,
o NM E
e FCC L
< 10
GGA
o FM
e BCC P
e Better lattice
constant 10

bce Fe fcc Fe
GGA /
7
o | S—r
LSDA
60 %b éb 30 60 ' %6. Gb

Volume (a.u.”)

90



Hybrid Functionals

> Mix in some fraction (a) of HF exchange

Exe’[n] = a(Ex — EY) + B ™ [n]

> B3LYP: Most widely used functional in chemistry

Exe = (1—ag)ExPPA 4+ agEZ* + a, AEZS + a EQ'F + (1 — ac) EYWN

ao = 0.20, ay = 0.72, and a. = 0.81.

> HSE [0=1/4]: range-separated, with adjustable
parameters

EPPE — gE™ 4 (1- ) EP™ 4+ EP

XC

EHSE — O!EfF’SR (a)) + (1 _ a)EfBE’SR (a)) + ExPBE,LR (a)) + ECPBE

XC



Assessment of functionals using G2 test sets

G2 and extended G2 test sets are often used to assessing and
improve new theoretical models.

Original G2 test set: 55 molecules used for comparing theoretical
and experimental molecular energies (atomization energies,
ionization potentials, electron affinities, and proton affinities) .

L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem. Phys.
94, 7221 (1991).

Extended G2 set (G2 neutral test set): 148 molecules with well-
established enthalpies of formation at 298 K, including 29 radicals,
35 nonhydrogen systems, 22 hydrocarbons, 47 substituted
hydrocarbons, and 15 inorganic hydrides.

L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem. Phys.
106, 1063 ~19971.



Test of XC functionals with G2 sets

- - Emerhof and Scuseria, JCP , 110, 5029 (1999
Atomization energies (kcal/mol) » JUF, 110, (1999)

Mae (G2) Mae (G2-1) Max ae (G2) Max ae (G2-1)

SVWN @ 1212 39.6 229 94
LDA { LSD(SVWNS5) 837 36.4 216 84 N
GGA { PBE 17.1 8.6 52 26 |AE=|E_ (mol)- 2 E,, (atom)
BLYP? 7.1 47 28 15 P
meta-GGA vsXc® 2.7 2.5 12 8
- a /
hybrid { B3LYP 3.1 2.4 20 10
PBE 1PBE 4.8 35 24 10

Bond length (Angstrom)

Mae Max ae
LSD (SVWNS5) 0016 0.095
PBE 0014 0.054
BLYP*® 0019 0.045
VSXC*® 0013 0.075
B3LYP* 0.009 0.039

PBE1PBE 0.009 0.055




Test of XC functionals with G2 sets

i i i ' P.1
lonization energies (eV) Emerhof and Scuseria, JCP , 110, 5029 (1999)

Mae (G2-1) Max ae(G2-1)
SVWN 0.69 1.2
LSD(SVWNS) 022 0.6
PBE 0.16 0.5 [=E(N-1)-E(N)
BLYP® 020 0.6
VSXC" 0.13 0.4
B3LYP® 0.17 0.8
PBE1PBE 0.16 0.7
Electron affinity (eV)
Hybrid functionals do not improve
— over GGA for IP and EA.
Mae (G2-1) Max ae(G2-1)
SVWN * 0.74 1.2
LSD (SVWNS5) 0.30 0.7
PBE 0.11 0.3 A=E(N)-E(N +1)
BLYP® 0.11 0.4
B3LYP?® 0.11 0.5

PBE1PBE 0.13 0.3




Test of XC functionals for solids

“F m poe PBE: MRE 0.8 %. MARE 1.0 %
g Jof W OB HSE: MRE 0.2 %, MARE 0.5 % r
5
s
Lattice constant §
£
S .
e
2.
Bulk modulus i E ]
P < PBE: MRE -9.8 %, MARE 9.4 % .
: HSE: MRE -3.2 %, MARE 6.4 % :
.‘o | 1 | | | | 1 1 | 1 | 1 1 1 1 ] 1 1 | 1

Na Al Rh Ag GaAs GaP  GaN BN NaCl  NaF
U Cu Pd Si BP SiC C MgO  LiCl LiF
J. Paier1 et al, J. Chem. Phys. 124, 154709 (2006)



Challenges in DFT

e Self-interaction error (SIE)

— One electron interacts with its own mean-field

— incomplete cancellation of self-interactions in Coulomb
and exchange terms

— Self-interaction correction (SIC)
J. Perdew and Z. Zunger, Phys. Rev. B 23, 5048 (1981)

— Optimized effective potential (OEP)
 “Band-gap” problem

* van der Waals dispersion is not properly described



John Perdew's Jacob' ladder
1 keal/mol~43 meV to “DFT heaven”

+ explicit dependence on unoccupied orbitals

+ explicit dependence on occupied orbitals

+ explicit dependence on kinetic energy density
+ explicit dependence on density gradients

Local density only

John P. Perdew and Karla Schmidt, in Density
Functional Theory and Its Applications to
Materials, AIP Conference Proceedings, Vol.
577, page 1-20.



