Probing catalyst-support interactions with experiment and theory

Michael G. White

Chemistry Department, Brookhaven National Laboratory
Department of Chemistry, Stony Brook University

CFN Workshop on Theory and Computation for Interface Science and Catalysis
Controlling Size & Composition: Deposition of Mass-Selected Clusters

- Precise control over particle “size”, chemical composition (metal to non-metal ratio)
- Any support possible - not limited by surface growth and nucleation mechanisms
- Amenable to computational description – in many cases exact expt. system can be modeled

“soft-landing”<0.2eV/atom
Cluster Deposition

Cluster coverage
10^{13} clusters/mm²
0.05-0.1 ML

Experimental characterization
• X-ray photoemision (XPS)
 - metal oxidation state
 - stoichiometry
• Thermal desorption/reaction
 - adsorbate binding energies
 - reaction products & mechanism
 - thermal stability/coalescence
• Laser two-photon photoemission (2PPE)
 - coverage dependent work functions & valence band
 - excited states/time evolution
Computational Considerations: Experimentalist’s Perspective

- **Unit cell size** ⇒ 1 cluster per unit cell ⇒ \(\theta \approx 0.1\text{-}0.4 \text{ ML} \)
 - experiments typically < 0.2 ML
 - small unit cells (3x3) – can lead to cluster “crowding”
 - some supports require larger (more costly) unit cells: oxides, vacancies, thin films...

- **Cluster structure** – metal compounds (C, O, S)
 - start with optimized gas-phase cluster ⇒ can be done at same or higher level of theory
 - *many* isomers and alternative surface binding arrangements for asymmetric clusters with 15-20 atoms
 - geometry optimization on surface *unlikely* to explore large departures from starting structure

- **Accuracy for adsorbate binding energies and barriers**
 - depends on functional used
 - working with TM oxides ⇒ hybrid DFT+U ; U may not be optimized for property to be measured
 - best used as comparisons among related systems

<table>
<thead>
<tr>
<th>surface</th>
<th>CO binding energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFT/PBE CO/Au(111)</td>
<td>0.4 eV</td>
</tr>
<tr>
<td>DFT/PBE CO/Mo(_4)S(_6)/Au(111)</td>
<td>0.9-1.0 eV</td>
</tr>
<tr>
<td>Expt CO/Mo(_4)S(_6)/Au(111)</td>
<td>0.7 eV</td>
</tr>
</tbody>
</table>
Metal-metal oxide support interactions

Metal-oxide support interactions strongly influence catalytic activity, especially metals on reducible oxides, e.g., TiO₂ & CeO₂

- Metal ↔ metal oxide charge transfer
- Participant in reaction ⇒ bi-functional catalyst, interface sites

Cu-based water-gas-shift catalysts (CO + H₂O→ CO₂ + H₂)

- Water dissociation on oxide
- CO oxidation at interface site

Correlations with interfacial charge transfer

In many cases, activity can be correlated with charge transfer from metal to oxide
- Stabilizes reduced oxide
- Presence of O-vacancies enhances water dissociation

"Inverse" WGS catalyst
\(\text{Ce}_6\text{O}_{13}/\text{Cu}(111) \)

\[
\begin{align*}
\text{Cu} & \rightarrow \text{Ce}_6\text{O}_{13} \\
3.96 \text{e}^- & \rightarrow 2\text{Ce}^{4+} \rightarrow 2\text{Ce}^{3+}
\end{align*}
\]

\[
\begin{align*}
\text{Pt} & \rightarrow \text{Pt}^{2+} \\
\text{2Ce}^{4+} & \rightarrow \text{2Ce}^{3+}
\end{align*}
\]

Charge transfer and water dissociation: Descriptors for WGS activity

Cu ⇌ oxide charge transfer:
1-D structures

Water dissociation energy:
3-D clusters

Factors influencing activity
- Cluster structure and size
- Cu ⇌ oxide cluster charge transfer
- Cation oxidation state – reducibility
- Water dissociation energy

Currently, detailed information about interfacial charge transfer is derived mostly from theory.
Experimentally Probing Charge Transfer

- Charge transfer \Rightarrow surface dipoles
- Work function (Φ) sensitive to surface dipole due to changes in surface electrostatic potential (ϕ)

 $\Phi = -e\phi - E_F$

- Measurements of Φ made by photoemission (UPS, 2PPE)
- $\Delta \Phi$ typically interpreted in terms of classical Topping model

\[
\Delta \Phi = \frac{e \times n_0 \theta \times \mu}{\varepsilon_0} \left(1 + \frac{\delta \times \alpha \times (n_0 \theta)^{3/2}}{4\pi \varepsilon_0}\right)^{-1}
\]

- $\mu \equiv$ dipole moment at interface $\Rightarrow 2dq$
- $\theta \equiv$ cluster coverage
- $\alpha \equiv$ cluster polarizability
- $\delta \equiv$ dipole-dipole interaction term

 $= \theta^{-1/2}$ for random distribution

\[
\Delta \Phi = \left(\frac{a\theta}{1 + b\theta}\right)\mu
\]

Examples

\[\Delta \Phi = \left(\frac{a\theta}{1 + b\theta} \right) \mu \]

- Topping model assumes uniform spacing

\[\Delta \Phi \triangleq \Theta \pm \Theta \mu \]

Mo\textsubscript{7}S\textsubscript{10} clusters on Al\textsubscript{2}O\textsubscript{3}/NiAl(110)

Zhou, Zhou, Camillone, White, PCCP, 2012, 14, 8105

Pivetta, Patthey, Schneider, Delley, PRB, 65 045417 (2002)
Two-Photon Photoemission (2PPE): Local Work Functions

- Ti:Sapphire laser; 80 MHz, 100 fs pulses
- 400nm & 267 nm; ≤ 30 mW avg power
- $2\hbar\nu = 6.0-9.5\text{eV}$
- focused beam spot (~200μm); raster scan surface
- Detect unoccupied states at $1\hbar\nu$
- Short pulses allow time dynamics
Work Function Measurements vs Coverage

- Map coverage using O-atom Auger intensity: focused e-beam (200-300 μm)
- Normalize to total number of ions deposited to obtain coverage vs position
- Measure spatially resolved 2PPE spectrum with focused laser

Deposited cluster distribution

Mo$_3$O$_9$/Cu(111)

2PPE vs position

\(IS_1 \)

\(Cu\ 3d \)

\(SS \)

2PPE intensity (a.u.)

final state energy (eV)

Normalized AES \(I_O/I_0 \)

Z position (mm)

X position (mm)

Normalized AES \(I_O/I_0 \)

work function shift (eV)

x-axis position with respect to deposition center (mm)
Ti

- Ti$_3$O$_6$
- Ti$_4$O$_8$
- Ti$_5$O$_{10}$

Clusters

- Ti$_x$O$_y^+$

![Graph showing mass intensity for Ti species](image)

Nb

- Nb$_3$O$_7$
- r-Nb$_3$O$_5$
- r-Nb$_4$O$_7$
- Nb$_4$O$_{10}$
- r-Nb$_5$O$_{10}$
- Nb$_5$O$_{12}$

Clusters

- Nb$_x$O$_y^+$

![Graph showing mass intensity for Nb species](image)

Stoichiometric

- Ti$_4^+$
- Nb$_5^+$

Reduced

- Nb$_3^+/Nb_4^+$

Samples

- Ti$_3$O$_6$/Cu(111)
- Ti$_5$O$_{10}$/Cu(111)
- Nb$_3$O$_7$/Cu(111)
- Nb$_4$O$_7$/Cu(111)

Notes

- "reduced": Nb$_3^+/Nb_4^+$
Work Function Shifts vs Coverage: $M_xO_y/Cu(111)$

- $\Delta \Phi > 0$ ($\mu < 0$) for all oxides: Cu → cluster charge transfer
- “Reducible” oxides Ti_xO_y and Nb_xO_y generally lower $\Delta \Phi$
- “Reduced” sub-stoichiometric clusters induce smaller $\Delta \Phi$
- Fits of $\Delta \Phi$ vs θ to Topping model provide intrinsic surface dipole, μ

Surface dipoles and Bulk Oxide Work Functions Φ_{bulk}

- Derived surface dipoles correlate with Φ_{bulk} (oxide)
- Includes bulk “reduced” samples
- Φ_{bulk} : measure of electronegativity

- $\Delta \Phi$ at ~1ML significantly below bulk values (relative to Cu(111))
- Thicker oxide layers required to reach bulk properties
Surface dipoles: DFT Bader Charge Transfer

Bader charge transferred to cluster: Cu→MₓOᵧ

- Surface dipoles roughly correlate with Bader charge transfer
- “Reduced” clusters accept less charge (lower oxid state)
- Larger clusters, more cations – more charge transfer

Level of agreement due to accuracy of DFT, unrealistic cluster structure, or ?
Comparison with charge transfer from DFT

- DFT gives electronic density \(n(r) = |\psi(r)|^2 \)
- continuous function without boundaries for atoms, so defining charge on each atom somewhat artificial, but nonetheless useful!

- If using atomic orbital expansions for wavefunctions, easy to define Mulliken populations (R. S. Mulliken, JCP, 23, 1833, 1955; Nobel Prize 1966)

\[
n_{\alpha}(r) = |\psi_{\alpha}|^2 \text{ and define charge on atom as } q_{\alpha} = Z_{\alpha} - \int n_{\alpha}(r)d^3r
\]
basis set dependent – not connected to observable charge density

- DFT codes provide Bader Charges – uses real space density with sharp boundaries for atoms (Richard Bader, McMaster Univ)

\[
q_{\alpha} = Z_{\alpha} - \int_{v_{\alpha}} n_{\alpha}(r)d^3r \quad v_{\alpha} \equiv \text{defines “volume” of atom } \alpha
\]

- Uses “zero flux surfaces” to define boundaries between atoms (\(\nabla n_{\perp} = 0 \))

- maxima typically at nuclei and minima between atoms
- charge within dividing surface defines atomic charge
- based on “observable” \(n(r) \)

http://theory.cm.utexas.edu/henkelman/research/bader/
Comparison with Bader Charges from DFT

- All systems show negative dipole moments, suggest Cu→cluster charge transfer in every case
- Dipoles less for reducible Nb clusters and “reduced” clusters with O-atoms removed
- Bader charge roughly correlates with surface dipole, but not always, i.e., r-W\textsubscript{3}O\textsubscript{6} and r-Nb\textsubscript{3}O\textsubscript{5} which transfer charge transfer to Cu(111) surface

Dipole has two contributions: from charge transfer and intrinsic cluster dipole
DFT surface electrostatic potentials: work functions

- calculated electrostatic potential energy normal to the surface
- \(\Delta \Phi^{\text{(DFT)}} = +0.07 \text{eV} \) with cluster on surface at 0.13 ML
- \(\Delta \Phi^{\text{(expt)}} = +0.06 \text{eV} \) @ 0.13 ML

\[\text{Electrostatic Potential Energy (eV)} \]

- Z(Å)
- \(\text{Nb}_3\text{O}_7/\text{Cu}(111) \)
- \(\text{Cu}(111) \)

W. An and P. Liu, unpublished
DFT electrostatic potentials: cluster dipole and charge transfer

Calculate electrostatic potential along surface normal

\[V_{\text{cluster/Cu}(111)} = V_{\text{Cu}(111)} + V_{\text{cluster}} + V_{\text{charge}} \]

The change from below and above the surface gives contribution to \(\Delta \Phi \)

\[\Delta \Phi = \Delta V_{\text{cluster}} + \Delta V_{\text{charge}} \]

Mo\(_3\)O\(_9\): Highly symmetric cluster has no dipole along surface normal

\[\Delta \Phi \approx \Delta V_{\text{charge}} \]

W\(_3\)O\(_6\): Oxygen atoms pointed away from surface leads to larger cluster dipole

\[\Delta \Phi \approx \Delta V_{\text{cluster}} \]

Charge transfer: Charge density difference maps (isosurfaces)

Charge density difference is alternative approach to “visualizing” charge transfer defined as $\Delta \rho = \rho_{(\text{slab+cluster})} - \rho_{\text{slab}} - \rho_{\text{cluster}}$

- Charge accumulation at interface- consistent with surface dipole, $\mu_{\text{exp}} = -0.84 \text{ D}$
- Suggests Nb$_3$O$_7$ on Cu(111) is partially reduced,
- Consistent with Bader charge on cluster -0.18e

The isosurfaces are 0.005 e/Å3

$W. \, \text{An and P. Liu, unpublished}$
Water dissociation on $M_xO_y/Cu(111)$ surfaces

Water dissociation key step for water-gas-shift (WGS)

$$H_2O(g) + O_{(cluster)} \rightarrow 2OH_{(cluster)} \rightarrow O_{(cluster)} + H_2$$

Different metal oxides

$Cu(111)$

- Mo_3O_6
- Ti_3O_6
- Nb_3O_7

Changes cluster stoichiometry

$Cu(111)$

- Ti_3O_5
- Ti_3O_6

Changes in support

$Cu_2O/Cu(111)$

- Nb_3O_5
- Nb_3O_7

Reducible oxides more active:
$NbO_x >> TiO_x > MoO_x, WO_x$

Clusters with “O-vacancies” very active: $Ti_3O_5 >> Ti_3O_6$

Only reducible clusters with O-vacancies active on Cu_2O
Water dissociation on M_xO_y/Cu(111) surfaces

<table>
<thead>
<tr>
<th>Cluster</th>
<th>μ(D) expt</th>
<th>Bader charge (e)</th>
<th>DFT water dissociation energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_3O_9</td>
<td>-3.96</td>
<td>-1.37</td>
<td>+0.68 eV a</td>
</tr>
<tr>
<td>Mo_3O_9</td>
<td>-4.52</td>
<td>-1.37</td>
<td>+0.74 eV a</td>
</tr>
<tr>
<td>Ti_3O_6</td>
<td>-0.48</td>
<td>-0.33</td>
<td>-0.75 eV a</td>
</tr>
<tr>
<td>Nb_3O_7</td>
<td>-0.84</td>
<td>-0.18</td>
<td>-0.82 eV</td>
</tr>
</tbody>
</table>

a Vidal, Liu, PCCP, 14, 16626 (2012)

- DFT results consistent with experiment
- Rxn takes place on cluster and not interface to form 2OH_{ad}
- Reactivity correlated with small charge transfer?

W. An and P. Liu, unpublished
Water dissociation of Nb$_3$O$_7$ on Cu(111) and Cu$_2$O surfaces

H$_2$O@Nb$_3$O$_7$/Cu(111)

- $E_a =$ 0.32 eV
- IS(-0.72 eV) → TS(-0.40 eV) → FS(-1.43 eV)
- $\Delta E_{\text{rxn}} =$ -0.71 eV

H$_2$O@Nb$_3$O$_7$/Cu$_2$O(111)

- $E_a =$ 2.27 eV
- IS(-0.97 eV) → TS(1.30 eV) → IS(-1.12 eV)
- $\Delta E_{\text{rxn}} =$ -0.14 eV

• Very high barrier to dissociation on oxide surface
• Consistent with experiments

W. An and P. Liu, unpublished
Summary

- Size-selected cluster experiments are well suited to computational modeling with DFT
 - Computer and experiments work on exactly the same system (or nearly so)
 - Adsorption structures, interfacial charge transfer, reactions
- DFT is ideally suited for unraveling experimental data
 - e.g., the microscopic origins of surface work function shifts deposition and water dissociation on different supports
- Challenges for computation
 - Need more robust methods for obtaining cluster structures – rapid sampling, annealing, ...
 - Electronic properties still too dependent on functional and empirical fixes like DFT+U for oxides
 - Need to incorporate dynamic motions of clusters and surface atoms, e.g., most calculations based on 0 K minimum energy paths
- DFT is an incredibly powerful ally of experimentalists in surface chemistry
Collaborative Theory Interactions at BNL

Ping Liu, Chemistry
transition metal compound clusters on surfaces; alcohol synthesis on modified Cu surfaces (DFT and KMC)

Jim Muckerman, Chemistry
First studies of transition metal clusters for catalysis (high level QC)

Yan Li, Computational Science Center
Self-assembled molecular wires (DFT, GW)

Hua-Gen Yu, Chemistry
Reaction Dynamics on cluster models of surfaces (DFT/TDDFT, TDWP)
Acknowledgements

Experiments
Dr. Miki Nakayama
Meng Xu
Dr. Yixiong Yang
Dr. Jia Zhou
Dr. Jing Zhou

Theory Collaboration
Ping Liu (BNL)
Wei An

Funding: DOE BES Chemical Sciences

CPU Time: CFN Computer Cluster

[Logos for Brookhaven National Laboratory and Stony Brook University]