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}:ontrolling Size & Composition: Deposition of Mass-Selected Clusters
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e Precise control over particle “size”, chemical
composition (metal to non-metal ratio)
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* Any support possible - not limited by surface
growth and nucleation mechanisms

* Amenable to computational description —in
many cases exact expt. system can be modeled



Cluster coverage
1013 clusters/mm?

0.05-0.1 ML

Experimental characterization

e X-ray photoemision (XPS)
- metal oxidation state

- stoichiometry

e Thermal desorption/reaction
- adsorbate binding energies

- reaction products & mechanism
- thermal stability/coalescence

e Laser two-photon photoemission
(2PPE)

- coverage dependent work
functions & valence band

- excited states/time evolution




Computational Considerations: Experimentalist’s Perspective

e Unit cell size = 1 cluster per unit cell = 0 = 0.1-0.4 ML
- experiments typically < 0.2 ML
- small unit cells (3x3) — can lead to cluster “crowding”
- some supports require larger (more costly) unit cells:
oxides, vacancies, thin films...
e Cluster structure — metal compounds (C, O, S)

- start with optimized gas-phase cluster = can be done at
same or higher level of theory

- many isomers and alternative surface binding
arrangements for asymmetric clusters with 15-20 atoms

- geometry optimization on surface unlikely to explore

: co
large departures from starting structure surface binding
T . . energy
e Accuracy for adsorbate binding energies and barriers
. DFT/PBE
- depends on functional used CO/AU(111) S ey
- working with TM oxides = hybrid DFT+U ; U may not be DET/PBE 0,910 oV
. . 9-1.0e
optimized for property to be measured CO/Mo,Se/Au(111)
- best used as comparisons among related systems Expt 0.7 oV
CO/Mo,Sg/Au(111) '




‘ Metal-metal oxide support interactions

Ln {ratel(101 5 molecules cm™2 5'1)}

Metal-oxide support interactions strongly influence catalytic activity,
especially metals on reducible oxides, e.g., TiO, & CeO,

® Metal <> metal oxide charge transfer

® Participant in reaction = bi-functional catalyst, interface sites

Cu-based water-gas-shift catalysts (CO + H,0— CO, + H,)
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‘ Correlations with interfacial charge transfer

In many cases, activity can be correlated

Pt./Ce,,0O
with charge transfer from metal to oxide o/ CeaoOso
® Stabilizes reduced oxide & \5 Cce3+ Pt— Pt¥
>
® Presence of O-vacancies enhances "L#LETL 2Ce**— 2Ce3*

water dissociation

vaL*Lﬁ' Vayssilov, Migani, Neyman, Konstantin,
Nat. Mat. 10, 310 (2011)
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‘ Charge transfer and water dissociation: Descriptors for WGS activity

Cu = oxide charge transfer:
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Factors influencing activity

Cluster structure and size

0.5

Measured activity

Cu < oxide cluster charge transfer
Cation oxidation state — reducibility
water dissociation energy

(10" molecules/cm?)
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Water dissociation energy:
3-D clusters
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Currently, detailed information
about interfacial charge transfer
is derived mostly from theory



Experimentally Probing Charge Transfer

Charge transfer = surface dipoles

work function (®) sensitive to
surface dipole due to changes in
surface electrostatic potential (¢)

(b=_e¢_EF

Measurements of ® made by
photoemission (UPS, 2PPE)

AD typically interpreted in terms
of classical Topping model

e X nyf X 8 X a X (n,0)3/2
AD = 0 ﬂ(1+ (ny0)
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J. Topping, Proc. Royal Soc. Lond. 114, 67-72 (1927)

Charge transfer results in surface dipoles

E

U = dipole moment at interface = 2dq

6 = cluster coverage

o = cluster polarizability

0 = dipole-dipole interaction term
= -2 for random distribution

Ad



Examples
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- Topping model assumes uniform spacing

Pivetta, Patthey, Schneider, Delley, PRB, 65 045417 (2002)



Two-Photon Photoemission (2PPE): Local Work Functions
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® Ti:Sapphire laser; 80 MHz, 100 fs pulses
® 400nm & 267 nm; <30 mW avg power
® 2hv =6.0-9.5eV
® focused beam spot (~200um); raster scan surface
® Detect unoccupied states at 1hv
(

Short pulses allow time dynamics



‘ Work Function Measurements vs Coverage Mo,0,/Cu(111)

Deposited cluster distribution
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Work Function Shifts vs Coverage : M,0,/Cu(111)
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® AD >0 (u<0)forall oxides: Cu—> cluster charge transfer
® “Reducible” oxides Ti, O, and Nb,O, generally lower A®
® “reduced” sub-stoichiometric clusters induce smaller A®

® Fits of A® vs 6 to Topping model provide intrinsic surface dipole, 1

Yang, Zhou, Nakayama, Nie, Liu, White, J. Phys. Chem. C 2014, 118, 13697-13706



Surface dipoles and Bulk Oxide Work Functions @, ,,
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® Derived surface dipoles correlate with
D, (oxide) ® AD at ~1ML significantly below

e Includes bulk “reduced” samples bulk values (relative to Cu(111))

Greiner, et al., Adv. Funct. Mat. 2012, 22, 4557-4568 ® Thicker oxide layers required to

® O, : measure of electronegativity reach bulk properties

De Renzi, et al., Phys. Rev. Lett. 2005, 95, 046804.
Li, et al. J. Phys. Chem. C 2011, 115, 5773



Surface dipoles: DFT Bader Charge Transfer

Bader charge transferred to cluster: Cu—>M,0,
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surface dipole (D)

;m e Surface dipoles roughly correlate

with Bader charge transfer

e “Reduced” clusters accept less
charge (lower oxid state)

e Larger clusters, more cations —
more charge transfer

Level of agreement due to
accuracy of DFT, unrealistic
cluster structure, or ?



Comparison with charge transfer from DFT

e DFT gives electronic density n(r) = |y (7)]|?
e continuous function without boundaries for atoms, so defining charge on each
atom somewhat artificial, but nonetheless useful!

e |f using atomic orbital expansions for wavefunctions, easy to define Mulliken
populations (R. S. Mulliken, JCP, 23, 1833, 1955; Nobel Prize 1966)
ng(r) = |Y|? and define charge onatomas q, = Z, — [ n, (r)d3r
basis set dependent — not connected to obervable charge density

e DFT codes provide Bader Charges — uses real space density with sharp boundaries
for atoms (Richard Bader, McMaster Univ)

Qo = Zg4 — fva ng(r)d3r v, = defines “volume” of atom a.

—

e Uses “zero flux surfaces” to define boundaries between atoms (Vn; = 0)

RS - maxima typically at nuclei and minima between atoms

Maximum on
charge density

surface

- charge within dividing surface defines atomic charge

./ . - based on “observable” n(r)

Surface of ch
de“.:;fye.-ﬁin?mﬂﬁ-,e http://theory.cm.utexas.edu/henkelman/research/bader/




Comparison with Bader Charges from DFT

tﬂm&mmm

(D) expt | -4.52 -1.71 -3.96 -2.30 -0.84 -0.40

Bader

-1.40 -0.72 -1.38 +0.28 -0.18 +0.47
charge (e)

e All systems show negative dipole moments, suggest Cu— cluster charge
transfer in every case

e Dipoles less for reducible Nb clusters and “reduced” clusters with O-atoms
removed

e Bader charge roughly correlates with surface dipole, but not always, i.e., r-W,0,
and r-Nb,O. which transfer charge transfer to Cu(111) surface

Dipole has two contributions: from charge transfer and intrinsic cluster dipole
17



DFT surface electrostatic potentials: work functions
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DFT electrostatic potentials: cluster dipole and charge transfer

5 Y T y T ! ! 4 v
Calculate electrostatic potential along la)

surface normal Mo50,
charge transfer
Vv
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The change from below and above the
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Yang, et al, J. Phys. Chem. C 2014, 118, 13697



Charge transfer: Charge density difference maps (isosurfaces)

Charge density difference is alternative approach to “visualizing” charge transfer

defined as Ap = P(slab+cluster) — Pslab ~ Pcluster

* Charge accumulation at interface- consistent
with surface dipole, p,,,=-0.84D

* Suggests Nb;O, on Cu(111) is partially reduced,

The isosurfaces are 0.005 e/A3

e Consistent with Bader charge on cluster -0.18e

W. An and P. Liu, unpublished



D,* signal (mass 4) (a.u.)

Water dissociation on MXOy/Cu(lll) surfaces

Water dissociation key step for water-gas-shift (WGS)

HZO(g) t O(cIuster) — ZOH(cluster) — O(cluster) t H2

Different metal oxides Changes cluster stoichiometry Changes in support
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reducible oxides more active: Clusters with “O-vacancies” Only reducible clusters with

NbO, >>TiO, > MoO,, WO, very active: Ti;O¢ >> Ti; O, O-vacancies active on Cu,O



Water dissociation on I\/IXOy/Cu(lll) surfaces

DFT water
Bader . ——
cluster | u(D) expt ) dissociation
& energy (eV)
W,0, -3.96 -1.37 +0.68 eV @
Mo,0, -4.52 -1.37 +0.74 eV @
Ti3Oq -0.48 -0.33 -0.75 eV ?
Nb,0, -0.84 -0.18 -0.82 eV

@Vidal, Liu, PCCP, 14, 16626 (2012)

On Cu(111)

D,* signal (mass 4) (a.u.)

200 300 400 500
surface temperature (K)

Interface site

* DFT results consistent with experiment

* Rxn takes place on cluster and not interface to form 20H

e Reactivity correlated with small charge transfer?

W. An and P. Liu, unpublished



Water dissociation of Nb;O, on Cu(111) and Cu,0 surfaces

H,0@Nb,0,/Cu(111)

1S(-0.72eV)

15(-0.97eV) TS(1.30eV) IS(-1.12eV)

* Very high barrier to dissociation on oxide surface

e Consistent with experiments

W. An and P. Liu, unpublished



Summary
e Size-selected cluster experiments are well suited to computational modeling
with DFT
» Computer and experiments work on exactly the same system (or nearly so)
» Adsorption structures, interfacial charge transfer, reactions
e DFT is ideally suited for unraveling experimental data

» e.g., the microscopic origins of surface work function shifts deposition and
water dissociation on different supports

e Challenges for computation

» Need more robust methods for obtaining cluster structures — rapid
sampling, annealing, ...

» Electronic properties still too dependent on functional and empirical fixes
like DFT+U for oxides

» Need to incorporate dynamic motions of clusters and surface atoms, e.g.,
most calculations based on 0 K minimum energy paths

e DFT s an incredibly powerful ally of experimentalists in surface chemistry



‘ Collaborative Theory Interactions at BNL

Ping Liu, Chemistry
transition metal compound clusters on surfaces;|alcohol synthesis on
modified Cu surfaces (DFT and KMC)

Jim Muckerman, Chemistry
First studies of transition metal clusters for catalysis (high level QC)

Yan Li, Computational Science Center
Self-assembled molecular wires (DFT, GW)

Hua- Gen Yu, Chem/stry
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