
Design and Implementation of an Intelligent
End-to-End Network QoS System

Sushant Sharma Dimitrios Katramatos Dantong Yu
Brookhaven National Laboratory, Upton, NY, USA.

Li Shi
Stony Brook University, Stony Brook, NY, USA.

Abstract—End-to-End guaranteed network QoS is a require-
ment for predictable data transfers between geographically
distant end-hosts. Existing QoS systems, however, do not have
the capability/intelligence to decide what resources to reserve
and which paths to choose when there are multiple and flexible
resource reservation requests. In this paper, we design and imple-
ment an intelligent system that can guarantee end-to-end network
QoS for multiple flexible reservation requests. At the heart of this
system is a polynomial time algorithm called resource reservation
and path construction (RRPC). The RRPC algorithm schedules
multiple flexible end-to-end data transfer requests by jointly
optimizing the path construction and bandwidth reservation
along these paths. We show that constructing such schedules is
NP-hard. We implement our intelligent QoS system, and present
the results of deployment on real world production networks
(ESnet and Internet2). Our implementation does not require
modifications or new software to be deployed on the routers
within network.

I. INTRODUCTION
The networking research community has dedicated signifi-

cant amounts of effort in developing novel QoS mechanisms.
Such mechanisms include architectures for implementing QoS
(such as Diffserv [3] and Intserv [4]), as well as protocol-
s/tools that can be used to reserve resources within QoS
enabled networks (such as RSVP [2], [5] and TeraPaths [14]).
Furthermore, research and education networks such as Inter-
net2 [13], ESnet [8], and GEANT [9] connect large number
of educational and government institutions, and allow these
institutions to reserve available resources (e.g., bandwidth).
Although such networks allow reservation of resources, these
reservation capabilities are only a first step towards achieving a
true end-to-end network QoS. Note that our focus in this paper
is not on providing intelligent QoS within Internet. Instead, we
focus on research and education networks such as Internet2
and ESnet that allow for bandwidth reservations. In this paper,
we consider bandwidth as the resource to be reserved, and use
the terms “bandwidth” and “resource” interchangeably.
True end-to-end QoS is achieved when resources can be

reserved along the complete path between two end hosts (e.g.,
the two end points of a TCP connection). This complete
path includes the local area networks of the end sites (such
as educational institutions and government organizations), in
addition to any intermediate domains (such as Internet2 or
ESnet) that connect these end sites (see e.g., Fig. 1). In almost
all end sites, end hosts usually do not have a direct connection
to the connecting router of the intermediate domain. The
route from an end host to the border router usually goes
via few other intermediate routers. As a result, in order to

�������	����� �������	�����

�����
�
���	��

�������������
�������������

Fig. 1. An example of a network connecting two end hosts. Path between
end-hosts traverse two Wide Area Networks and two Local Area Networks.

guarantee a true end-to-end network QoS, it is important for
the end sites to also have resource reservation capabilities
within their local area networks (LANs). The task of reserving
resources becomes even more challenging as the end site
networks and the intermediate domains may not implement
the same QoS enabling technologies (e.g., Intserv, Diffserv,
MPLS, etc.). A reservation tool should be able to coordinate
resource reservations among these heterogeneous networks.
Such a reservation tool forms an important component of the
system that can provide a true end-to-end intelligent network
QoS. Note that we do not aim to provide an alternative to
existing QoS enabling technologies. Instead, our proposed
intelligent system is built on top of these technologies. We
assume the existence of bandwidth reservation mechanisms
within network domains along the end-to-end path.
One important limitation of existing QoS systems is the

lack of intelligence/flexibility in reserving requested resources.
That is, existing systems typically reserve exactly the amount
of resources that were requested. However, many times, user
requests are flexible or less rigid in terms of bandwidth and
time requirements. Handling flexible requests require addi-
tional intelligence to be built into the current QoS ecosystem.
In general, user requests have the following characteristics:

• Requests can be flexible in nature, e.g., a user may
require a set of data to be successfully transferred from
one end point to another by a certain deadline. Any
resource reservation that can meet that deadline would
be acceptable.

• There may be multiple flexible requests that are needed
to be satisfied.

• Requests can be available ahead of time, in advance. As
an example, scientists at one site may know that their ex-
periments are going to generate a certain amount of data
by a certain time. This data would need to be transferred
for analysis to a site located in a geographically different
location in a timely manner. In such a case, it is desired
to reserve an appropriate amount of network resources
ahead of time.

SC12, November 10-16, 2012, Salt Lake City, Utah, USA
978-1-4673-0806-9/12/$31.00 c©2012 IEEE

The above characteristics create situations where there can
be multiple end-to-end paths that can satisfy reservation re-
quests. Furthermore, there could be multiple options on how
much bandwidth (and time) needs to be reserved to satisfy
reservation requests. This is beyond the capabilities of current
QoS systems as there is no more a single or obvious option,
and the QoS system needs to intelligently choose a solution
among many options. Our goal in this paper is to design
and implement an end-to-end QoS ecosystem that is capable
of accommodating and intelligently scheduling multiple and
flexible resource reservation requests.

A. Desired Properties
We now list a set of properties/capabilities that an intelligent

end-to-end network QoS system should possess in order to
accommodate multiple flexible reservation requests.
1) The QoS system should have the capability to collect and
maintain knowledge about the availability of resources
within all network domains (local, remote and interme-
diate) that connect the two end hosts.

2) Given the resource availability and a set of reservation
requests, the QoS system should be able to make in-
telligent reservations across all domains connecting two
end hosts. Such resource reservations should satisfy all
reservation requests, if possible.

3) The QoS system should be flexible enough so that the
researchers can implement and test different scheduling
(i.e., resource reservation) algorithms with minimum
effort.

Our goal in this paper is to design and implement an end-to-
end network QoS system that possess all of the above prop-
erties, and should be able to accommodate and intelligently
schedule multiple flexible resource reservation requests.

B. Contributions
The following are the main contributions of our work in

this paper:
1) We present the design of a QoS system that can ac-
commodate and intelligently schedule multiple flexible
resource reservation requests between two end hosts.
These hosts may not belong to the same local area
network (generally they are also geographically distant
as shown in Fig. 1).

2) We consider a novel problem of jointly optimizing route
construction and scheduling of multiple flexible resource
reservation requests. We show that the problem is NP-
hard and present an efficient heuristic, called RRPC, to
solve it. In the past, we have developed an algorithm
called RRA [21] that solves a much simple problem,
and constructs bandwidth reservation schedules without
considering route construction.

3) We implement the RRPC algorithm as well as the QoS
system that we propose. Our implementation runs on
real hardware. Furthermore, our system does not require
updating or installing any new software on the routers
within the network.

c l a s s p a y l o a d I n f o {
long [] amount o f da ta ;
long [] sTime ;
long [] eTime ;
long [] r a t e l i m i t ;
S t r i n g o b j e c t i v e ;
S t r i n g s r c IP , d s t I P ;
S t r i n g p o r t r a n g e ;

}

Fig. 2. Data structure for the reservation request.

4) We have deployed our system on real world production
networks. Our QoS system is stable and does not have
any negative effect on the operation of regular users of
the production networks. The results presented in this
paper are obtained from real world networks.

The rest of this paper is organized as follows: In Section II,
we describe the architecture for the intelligent QoS system in
detail. In Section III, we discuss a scheduling problem and
an efficient algorithm to solve it. In Section IV, we discuss
the details of the deployment of our system on real world
networks, and present results. Section V discusses the related
work, and Section VI concludes this paper.

II. SYSTEM ARCHITECTURE
A. Overview
Networking domains between the two end hosts usually

employ heterogeneous technologies to enable QoS (dynamic
circuits, MPLS tunnels, Diffserv, Intserv, etc.). As a result of
this heterogeneity, providing a true end-to-end QoS requires a
mechanism for these heterogeneous systems to coordinate with
each other. This requirement motivates the need for the first
component in our architecture called the Domain Controller
(DC). Each intermediate domain that connects the two end
hosts has a DC. Each DC coordinates with other domains
and exposes a set of services to enable resource reservations
within its own network. The underlying mechanism to enable
reservations can be different for different domains.
In addition to performing coordination with other domains,

each DC further requires a mechanism to obtain and reserve
the resources within its own LAN. In order to accomplish this,
we introduce another component called the LAN-manager.
Each DC communicates with its corresponding LAN-manager
to obtain and reserve necessary resources within its LAN.
The third and most important component of our architecture

that instills the intelligence within the QoS ecosystem, is
called the Request Scheduler (RS). The objective of RS is
to accept the resource availability and reservation requests as
input, and to construct a feasible reservation schedule that
satisfies the reservation requests according to some objective.
An RS is invoked by a DC. Figure 3 shows components of the
proposed architecture for our intelligent end-to-end network
QoS system. We now describe the three components of our
architecture in detail.

B. Domain Controller (DC)
The domain controllers are the glue that holds the complete

intelligent QoS ecosystem together. An application that wants
to make multiple end-to-end reservations between two end

Fig. 3. Architecture of an intelligent end-to-end network QoS system.

hosts will contact a DC in order to submit the reservation
requests. The DC being contacted can belong to either one of
the two end site LANs, and is referred to as the local DC.
The DC for the LAN of the other end host is referred to as
the remote DC. The goal is to provide sufficient information
to the local DC that will help it to perform or initiate appro-
priate configurations within the local network domain, remote
network domain, and across all the intermediate domains.
Description of the reservation request. An application
can use the data structure shown in Fig. 2 to submit multiple
reservation requests to the local DC. The amount_of_data
array contains the amount of data that needs to be transferred
as part of each flexible request. The variable sTime indicates
the time when the data will become ready to be transferred for
each request, and the variable eTime indicates the deadline by
which the application would like the data transfer to finish for
each request. The rate_limit array specifies the maximum
rate at which the data for each request can be transmitted. As
an example the data that is being read from a particular disk
will be limited by the rate at which data can be read from
that disk. Therefore, even if network can support a higher
data transfer rate, this field will indicate that there is no need
to reserve a larger amount of bandwidth. The objective
variable indicates the objective of data transfer for all requests.
The objective value dictates the algorithm that the RS will
execute in order to schedule the reservations. As an example,
an intuitive objective could be to make reservations for the
submitted requests in a way that minimizes the sum of the
data transfer times of all the requests. This is also the objective
that we consider later in Section III where we develop our
scheduling algorithm. The srcIP and dstIP indicate two
end hosts. The port_range variable indicates the range of
port numbers (e.g., port 20 for FTP) that the data transfer
application will use to perform data transfer. This port range is
required by the LAN-managers to configure the routers within
the local and remote LANs.
Once a DC receives the reservation request, it performs the

following tasks to determine the resource availabilities:
• The first step is to determine the intermediate domains
that connects the two end sites. As an example, the
Brookhaven National Lab (BNL) is connected to the
Lawrence Berkeley National Lab (LBL) via one domain
(ESnet), whereas BNL is connected to the University of
Michigan (UMICH) via two intermediate domains (ESnet
and Internet2). Currently, we maintain this information
in a local database at each end site. However, for large
numbers of end sites and intermediate domains we plan
to develop a distributed database design in future.

• In the second step, the local DC contacts the LAN-
manager of its own site and obtains the amount of
available resources.

• In the third step, the local DC contacts the remote DC
and obtains the resource availability within the remote
LAN.

• In the last step, the local DC contacts the DCs for each
of the intermediate domains and collects the resource
availabilities within these domains.

The precise manner in which the resource availability is de-
picted is described in Section II-C, where we also describe the
operation of a LAN-manager. After collecting the necessary
resource availability information, the local DC passes on this
information to its RS along with the associated reservation
request. The DC then waits for the scheduling results from
the RS. Once the scheduling results are communicated back to
the DC, the DC further communicates these results to all other
DCs involved (itself, remote, and intermediate) along the path.
The objective of this communication is to indicate to the other
DCs that the network devices within their LANs should now
be configured in accordance with the generated schedule. It is
the responsibility of the LAN-manager to actually configure
the network devices within the LAN in accordance with the
generated reservation schedule.
Once the network devices within all domains (local, remote,

and intermediate) have been configured, the local DC com-
municate the reservation schedule back to the application that
requested the reservations. The application can now schedule
the data transfers between two end hosts in accordance with
the communicated reservation schedules.

C. LAN-Manager
A LAN-manger can be subdivided into two main compo-

nents based on the functions they perform. The two compo-
nents are as follows:

• Resource manager. It receives the resource availability
requests from the DC, and replies back with the resource
availability within the LAN.

• Network device manager. It receives the reservation
schedule from the DC, and configures the network de-
vices within LAN in accordance with the reservation
schedule received.

We next describe these two components in detail.
Generating Resource Availability:
Upon receiving the request for resource availability, the

LAN-manager has to respond with the resource availability
along the portion of the path/paths within its domain.
End-site LANs: For the end site LAN domains, these paths

connects the end host to the border router. The border router
of an end site connects the end site to an intermediate WAN
domain via which the route to the other end host goes.
In order to determine the resource availability along the

portion of paths within an end site LAN, the LAN-manager
does the following:

• It maintains the topology of the LAN and the resources
that are available or reserved along individual hops.

(a) Graphical representation of BAG-1. (b) Graphical representation of BAG-2. (c) Intersection of BAG-1 and BAG-2.

Fig. 4. Illustration of bandwidth availability graphs for a single link between two time instances.

• It determines the paths between the end host and the
border router using the stored topology information. Even
in large organizations, the number of paths that packets
follow from end hosts to the border router are limited to
only a few (one/two in most cases).

• It uses a data structure called bandwidth availability
graph (BAG) [21] to indicate the time varying availability
of bandwidth over a certain link for a given time interval.
The BAG for a link is constructed using the resource
usage/availability information stored in a database. The
graphical representation of an example BAG is shown in
Fig. 4(a).

To construct the BAG for a particular path, BAGs for all
the hops in that path are intersected with each other. In the
intersected BAG, every time instant will have the available
bandwidth as the minimum of the bandwidths in all input
BAGs at that instant. As an example of intersection, Fig. 4(c)
shows the intersection of BAGs in Figs. 4(a) and 4(b). The
BAGs for all the links in the paths between the end host and
the border router are notified back to the DC that requested it.
Intermediate WANs: For an intermediate WAN domain,

the path within itself connects the border routers of the two
adjacent domains. The LAN-manager in this case can return
the available resources using a procedure similar to what we
described for an end site LAN. However, we assume that it
is up to the WAN administrators on how they maintain and
generate such information. Our framework in this paper does
not impose any restrictions on intermediate WANs.
As our experiments in this paper are based on using In-

ternet2 and ESnet as the intermediate WAN domains (which
utilize the OSCARS system [18] for resource reservations),
we explain here what kind of information is generated by
the LAN-managers of these networks at the time of writing
of this paper. These domains require applications to request
bandwidth availability graph only for a certain number of
paths (as opposed to the complete topology). These will be
the paths that connect the two border routers. Furthermore,
these domains also need the applications to specify additional
criteria based on which paths should be returned (e.g., “only
paths that can provide a bandwidth of ≥ 2 Gbps between time
t1 and t2”). Without these limits and criteria, the number of
potential paths can be very large, which can place unnecessary
communication and processing overhead on DCs.
Another important caveat, while requesting availability in-

formation from intermediate DCs, is related to the way in
which two end points are specified to these DCs. As we
have noted before, the route between two end sites can

traverse more than one WAN domains. Given that the network
topologies for these domains are available publicly [8], [13],
the LAN-managers for these domains can construct complete
routes connecting the two end sites. However, at the time of
writing of this paper, no single intermediate DC can provide
BAGs for the complete path interconnecting two end sites.
Currently, an intermediate DC can construct BAGs only for
the hops that are along the segment of the path within its
domain. As a result, the local DC of an end site may have to
contact the intermediate DCs one by one in order to gather
the BAG for complete paths connecting two end site LANs.
In the future, if and when intermediate DCs can exchange
information about their resource availability, it may become
possible to query a single controller to construct the BAGs
along complete paths.
Configuring Network devices:
The second task performed by the LAN-manager is to

configure individual routers within the LAN in accordance
with the reservation schedule given to it by the DC. Note that
the actual reservation schedule is determined by the RS. The
DC only passes on this schedule to the LAN-manager.
Configuring a routing device within a domain depends on

the particular device and the options that the device provides
for its configuration. Automated configuration is done typically
via the Command Line Interface (CLI) of a device driven
by software connecting to the router using the TELNET or
SSH protocols. This is the way we use currently in our work
to perform configuration changes. Alternatively, configuration
changes can be applied through the SNMP protocol. The
emerging OpenFlow [17] standard is promising way towards
a unified method to configure routers of multiple different
vendors. OpenFlow has been adopted by several network
device vendors, including Juniper and Cisco. We plan to add
OpenFlow as one of the network device managers within
our LAN-manager to support OpenFlow-compatible network
devices.
In our current implementation, the LAN-managers of local

and remote sites utilize a combination of differentiated services
(diffserv) and policy-based routing (PBR) techniques to setup
the segment of a path within an end site LAN. The traffic that
is allowed to enter the path is identified by an Access Control
List (ACL). The diffserv configuration assigns this traffic to a
high-priority class of service, typically the Expedite Forward
(EF) class, and polices the bandwidth to the reserved amount.
The PBR configuration forwards the traffic into an acquired
layer 2 circuit within the WAN. There are some more details
regarding the configuration of network devices in [14].

D. Request Scheduler (RS)

The Request Scheduler is the component that instills intelli-
gence in the end-to-end network QoS system. The RS accepts
a set of flexible requests (see Fig. 2) along with the resource
availability (i.e., BAGs) on the relevant links between two
end sites. These are the set of requests that were originally
submitted by the user to the DC. The resource availability
was collected by all the DCs via their LAN-managers. The
local DC, to which the reservation requests were submitted,
collects the availability information from all other DCs. Once
the local DC has collected the resource availability as well
as the reservation requests, the information is passed onto
the RS. The objective of the RS is to generate a feasible
bandwidth reservation schedule so that the submitted requests
are satisfied according to some objective. The algorithm used
by the RS to generate the reservation schedule depends on
the objective in the reservation requests passed by the user.
Different algorithms will result in different schedules. We
now consider one such objective and design an algorithm to
accomplish it in the next section.

III. JOINT OPTIMIZATION OF PATH CONSTRUCTION AND
RESOURCE RESERVATION

A. Problem Definition

We consider a joint problem of constructing an end-to-end
path and a reservation schedule for multiple flexible requests
along the constructed path.
Objective. The objective is to jointly construct an end-to-end
path between two end hosts and a reservation schedule along
the links of that path. The constructed path and reservation
schedule should maximize the number of satisfied requests
while minimizing the total data transfer time.
Input. Any algorithm that solves the problem will take the
following as input:

• The addresses for two end hosts.
• A set of input requests. Every input request for the
algorithm consists of (i) the amount of data that needs
to be transferred, (ii) the earliest start time when the data
transfer can start for this request, and (iii) the deadline by
which the data transfer for this request should complete.

• A set of links between two end hosts along with their
BAGs. The BAGs can be different for different links.

A sample input network is shown in Fig. 1 (on page 1). BAGs
for individual links are not shown.
Output. The output for a set of reservation requests consists
of the following:

• The path that is chosen between the two end hosts.
• A set of start times at which the application is guaranteed
to have reserved bandwidth. Every start time corresponds
to a submitted request. An unsatisfied request will not
have any start time.

• A set of durations for which the bandwidths will be re-
served for individual requests. Each duration corresponds

to a submitted request. Again, unsatisfied requests will
not have any durations.

• A set of bandwidths that will be reserved for individual
requests for the above mentioned durations. There is
one value of bandwidth corresponding to each submitted
request.

A number of questions arise from the above problem
description.
First, why is flow splitting not allowed? The reason is

twofold. One, it is well known that flow splitting can cause
the data packets to arrive out of order at the destination due
to variation in RTT along different paths. This can cause
unexpected behavior in terms of bandwidth utilization [20].
Two, maintaining reservation information for single request
across multiple paths can be very expensive for intermediate
routers. One can explore this option as future work at the
expense of memory and processing power of routers.
Second, why a single path is chosen to satisfy all the

requests? The reason for this is more technical than theoret-
ical. The circuits that can be reserved through intermediate
WANs such as Internet2 and ESnet behave as virtual wires
interconnecting the end site border routers with a single hop.
These virtual wires appear to end site routers as Virtual Local
Area Networks (VLANs), each with a specific numeric tag
assigned. The number of VLAN tags is limited in number
(currently 4K). Given that several users submit their own sets
of requests and each path needs at least one VLAN tag, we
decided to limit a set of requests to use only one path (to
minimize VLAN tag usage). Note that it is easy to manipulate
the system by submitting one request per set. This way each
satisfied request gets a different path at the expense of VLAN
tags.
Third, why the reserved bandwidth for an individual request

remains constant throughout the reserved time period? Again,
the reason is more technical than theoretical. Changing the
bandwidth for an individual circuit requires updating configu-
rations of all the routers along the path. This is an extremely
expensive and time consuming operation. During this change,
traffic may need to be assigned back to the default best effort
path and it may not be possible to provide QoS guarantees.

B. Problem Complexity
We now present a sketch of proof which shows that our

problem is an NP-hard problem.
Theorem 1: Joint optimization of path construction and

resource reservation for multiple flexible requests between two
end hosts is an NP-hard problem.

Proof: We first show that our problem is a generalized
version of the so-called SMR3 problem [21]. The SMR3

problem considers that a path and the BAG for this path
between two end hosts is given. It then tries to accommodate
multiple flexible resource reservation requests (as shown in
Fig. 2) along that path. The objective of SMR3 is to construct
a reservation schedule that will accommodate as many reserva-
tion requests as possible while minimizing the time required to
perform a data transfer. Therefore, SMR3 is a special instance

of our problem where we have exactly one path between two
end hosts.
Furthermore, in [21], it was shown that an NP-hard variation

of the Generalized Assignment Problem [6] can be converted
to SMR3 in polynomial time, thereby proving that SMR3 is
also an NP-hard problem. Since an NP-hard problem (i.e.,
SMR3) is a special instance of our problem, our problem is
at least NP-hard.
Given the NP-hardness of our problem, we cannot develop
an optimal polynomial time solution procedure unless P =
NP . As a result, we will develop an efficient polynomial time
heuristic that constructs effective solutions for our problem.

C. Resource Reservation and Path Construction (RRPC) Al-
gorithm
In this section, we are going to develop a polynomial

time algorithm, called RRPC, to solve the joint problem of
path construction and resource reservation. The objective is to
maximize the number of satisfied requests while minimizing
the total data transfer time. We first provide an overview of
the RRPC algorithm, followed by a detailed description and
complexity analysis.
Basic Idea:
Our RRPC algorithm follows a procedure similar to Dijk-

stra’s shortest path algorithm. However, instead of constructing
a shortest hop (or shortest distance) route between the two end
hosts, the RRPC algorithms aims to construct a route that can
provide the best solution to our problem.
The RRPC algorithms begins by considering the source

end host as the current node. Connecting the current node
with each neighboring node will provide partial paths (one
path corresponding to each neighboring node). The RRPC
algorithm then calculates a solution along each of these partial
paths that have their end nodes as the neighboring nodes. All
the current solutions along with their corresponding partial
paths are stored. The end node with the best current solution
becomes the current node, and the above procedure is repeated
again. The procedure stops when the destination end host
becomes the current node.
In addition to the detailed description, there are two fun-

damental questions that we have not described in the above
overview of the algorithm.
1) How to construct the solution for a given (partial) path?
2) How to determine if one solution is better than the other?
That is, how can two solutions be compared?

We answer the above questions before we present the
detailed description of our algorithm.
Creating a Solution for a Partial Path:
A solution along a partial path implies a set of time varying

bandwidth reservations along all the hops in that path. As per
our objective, these reservations should be made in a way that
can accommodate as many reservation requests as possible
while minimizing the total data transfer time.
The first step towards creating such a solution is to construct

a BAG for the given path. This can be achieved by intersecting

the BAGs for all the hops in the path. These individual
BAGs are part of the input to our algorithm. This intersection
will give us a single BAG that represents the time varying
availability of bandwidth along the given path. We have
developed a linear time algorithm, called BAGSECT (BAG-
interSECTion), to perform the intersection of two BAGs. The
BAGSECT algorithm can be described as follows:
BAGSECT: We consider that the input BAGs to the

algorithm are well formed. That is, the segments within the
BAGs are stored in the increasing order of start time values,
and the individual segments do not overlap in time domain.
The algorithm begins by considering the start times of the first
segment from two BAGs; bag1 and bag2. As these start times
will be same1, the start time of the first segment in the merged
BAG (denoted by mBAG) will also be same. The bandwidth
in the first segment of mBAG will be equal to the minimum
of the bandwidths in the first two segments of bag1 and bag2.
The algorithm will then move on to the next segment of both
bag1 and bag2, as well as to the next segment of mBAG.
The start time of the current segment of mBAG will be

made equal to the minimum of the start times of current
segments of bag1 and bag2. Among the two current segments
of bag1 and bag2, the BAGSECT algorithm will next consider
the bandwidth of the segment with earlier start time. This
bandwidth is denoted by bwearly. The algorithm then uses
bwprev to denote the bandwidth of the previous segment of the
segment with later start time. The bandwidth of the current
segment of mBAG will be made equal to the minimum of
bwearly and bwprev. The algorithm then increments the current
segment for the mBAG and the current segment for the BAG
corresponding to bwearly. It then repeats the procedure in the
previous paragraph.
The algorithm stops its iterations when it has iterated over

all the segments from both BAGs. It can be easily shown
that BAGSECT is an optimal algorithm. However, we do
not include such proof here. Pseudocode of the BAGSECT
algorithm is omitted due to page limitations.
It is possible that the intersected BAG has contiguous seg-

ments with equal bandwidth values. If needed, such segments
can be merged by going over the BAG in one pass.
Once the final intersected BAG of the hops along the path

is obtained, the next (or the final) step is to accommodate
as many requests as possible in this BAG while minimizing
the total data transfer time. As shown in [21], this problem
is also an NP-hard problem. In [21], we have developed an
efficient polynomial time heuristic called resource reservation
algorithm (RRA) to accommodate multiple requests within a
BAG with same objective as that of RRPC. As a result, instead
of developing a new heuristic, we plan to use RRA in our
system implementation to solve this sub-problem. Note that the
design of our RRPC algorithm can accommodate any alternate
sub-procedures to create a solution for partial path, and is not
limited to using RRA. Any sub-procedure other than RRA may
1Although not possible in our settings, in the case start times are not same,

then we can make them same by adding a segment with zero bandwidth to
the beginning of the BAG with later start time.

Fig. 5. Two solutions with same number of requests and data transfer times.

not be suitable for the joint path construction and resource
reservation problem considered here.
Comparing Two Solutions:
Our objective is to generate a solution that accommodates

largest number of reservation requests while minimizing the
data transfer time. However, by looking at the structure of
possible solutions, we can observe that there can be multiple
different solutions that satisfy such an objective. As an ex-
ample, Fig. 5 shows two optimal solutions that accommodate
three reservation requests and complete the data transfer in
same amount of time. However, the first solution enables the
transfer of 250 Mb data, while the second solution enables
the transfer of 300 Mb data. From a theoretical perspective,
both of these solutions are optimal. However, in real world
systems, one would definitely prefer the second solution. We
can now see that there are three fundamental building blocks of
each solution: (i) the number of requests that are satisfied, (ii)
the time taken to complete the requests, and (iiI) the amount
of data transferred. For a particular solution, we define the
ratio of “total data transferred in the satisfied requests” to “the
time taken to transfer that data” as the effective bandwidth
utilization (EBU). We consider a solution to be superior to
another solution if it satisfies larger number of requests. If
the number of satisfied requests is the same, then the solution
with shorter transfer time will be considered superior. Finally,
if the transfer times are also the same, then the solution with
larger EBU is considered to be superior. If both solutions
accommodate the same number of requests, have the same
transfer time, and the same EBU, then both solutions are
considered to be equally effective. Note that it is possible that a
different criteria for solution comparison may be appropriate in
some other scenario. For example, someone may prefer EBU
over number of satisfied requests. In that case, the design of
our RRPC algorithm is flexible enough to incorporate the new
user defined criteria.
Detailed Description of the RRPC Algorithm:
The RRPC algorithm runs in iterations. To begin with, every

node in the network stores a path, a BAG, and a solution that
accommodates zero requests (i.e., the worst possible solution).
The stored path at a node represents the current best path from
the source node to this node, and is set to null in the beginning.
The BAG stored at a node represents the intersection of BAGs
along the hops of the stored path, and is also set to null
in the beginning. The stored solution represents the solution
obtained if the reservations are scheduled along the stored
path (i.e., solution along the partial path for nodes that are
not destination nodes). The algorithm then starts the first
iteration by considering the source node as the current node,
and performs the following steps:

1) It considers the path stored at the current node, and
considers all the paths that extend the stored path to
the neighboring nodes.

2) For every new extended path considered, the algo-
rithm calculates the effective BAG along that path, and
calculates the solution. The new solution obtained is
compared with the one that is already stored at the
corresponding neighboring node. If the new solution is
better, then the new solution replaces the stored solution
and the stored path in the corresponding neighboring
node.

3) The current node is marked as visited.
4) Among all the nodes that are not visited, the one that
has the best solution becomes the current node.

5) If the current node is the destination node, then the
RRPC algorithm stops. The path and the solution stored
in the destination node is the final solution.

6) If the current node is not the destination node, then all
the steps (from Step 1 to Step 6) are repeated for this
current node.

There are some observations that we can make regarding
the RRPC algorithm.
First, whenever we increase the length of a path by one

node, the new solution on this longer path cannot be better.
This can be easily proven by using the fact that intersection
of two BAGs can never produce a superior BAG. That is, at
every time instant, the intersected BAG will have the available
bandwidth that is not larger than the available bandwidth
in the two intersecting BAGs. As a result, if the solutions
being constructed for partial path are optimal, then our RRPC
algorithm will construct an optimal solution. This statement
may not seem obvious. However, the proof can follow the
same token as the proof of optimality of Dijkstra’s algorithm
on the graphs with non negative weights. Also note, that
creating a solution for a partial path is an NP-hard problem.
Therefore, it is not possible to have an optimal algorithm with
polynomial running time unless P = NP .
Second, instead of saving the complete path from source

node to a particular node, that particular node may only save
its predecessor.

Runtime Complexity:
The RRPC algorithm never traverses a node already marked

as “visited”, and each node is marked as “visited” only once.
This results in every hop in the network being considered
only once. As a result, the number of hops being traversed in
worst case is O(|V|2), where V is the set of all vertices/nodes
in the network. Next, whenever a hop is considered, RRPC
(i) intersect two BAGs using the BAGSECT algorithm, and
(ii) constructs a solution using RRA.
For (i), the running time of BAGSECT algorithm is

O(Mbi + Mbj), where Mbi and Mbj are the number of
segments in bags bi and bj respectively.
For (ii), the running time of RRA is O(N3 +N2M) [21],

where N is the number of flexible requests that needs to be
accommodated in a bandwidth availability graph withM steps.

������
��	�

�
��

����� ��
���

��� ���
��� ���

Fig. 6. Network connectivity.

TABLE I
INDIVIDUAL REQUESTS BETWEEN THREE PAIRS OF END SITES.

Req- Soure Desti- Volu- Start Dead- BW
uest# -nation -me Time -line Limit

(GB) (Hrs) (Hrs) (Mb/s)
1 B1 U1 200 14:41 15:31 800
2 U1 B0 100 14:46 15:36 400
3 B0 U0 160 14:51 15:41 600

In order to identify the next node to be visited, the RRPC
algorithm has to select the best node corresponding to the
O(|V|) stored solutions. The selection can be accomplished in
O(|V|) time. As the number of nodes to be visited is also
limited to O(|V|), the total time for identifying next node
during all iterations will be O(|V|2) in worst case. Note that
we can do better than O(|V|2), however, it does not affect the
overall running time as we see next.
The total running time of the RRPC algorithm can now be

written as O(|V|2·(N3+N2M+Mbi+Mbj)+|V|2). Whenever
two BAGs, bi and bj , with Mbi andMbj steps are intersected,
the resulting BAG cannot have more thanMbi+Mbj steps. As
a result, in the worst case, the size of each BAG at any step
in the RRPC algorithm cannot exceed

∑
bi∈B

Mbi , where B
is the set of BAGs along all hops in the network. As a result,
the expression for the worst case running time of the RRPC
algorithm is

O

(
|V|2 ·

[
N3 +N2 ·

∑
bi∈B

Mbi

])
,

We find that in real world experiments, the worst case running
time is rarely reached, and the RRPC algorithm runs extremely
efficiently.

IV. EXPERIMENTS
A. Network Setup
We ran our experiments between two geographically distant

sites connected via two intermediate WAN domains. Figure 6
shows the connectivity of our network. The two end sites
are Brookhaven National Laboratory (BNL) and University of
Michigan (UMICH). BNL is connected to ESnet, and UMICH
is connected to Internet-2. ESnet and Internet-2 are connected
to each other via several peering points. We have omitted the
topologies of ESnet and Internet-2 as they are rather large and
can be obtained online [8], [13]. We have deliberately omitted
the LAN topology of end sites as their topologies are private
and cannot be disclosed publicly. In Section IV-B, we will
show the working of our QoS system, and in Section IV-C,
we will show the working of the RRPC algorithm.

B. Single Request
Our goal in this section is to demonstrate the operation of

bandwidth reservations within our QoS system. In this section,

TABLE II
RESERVATION SCHEDULES FOR INDIVIDUAL REQUESTS IN TABLE I.

Request Soure Desti- Start End Reserved
-nation Time Time BW

(Hrs) (Hrs) (Mb/s)
1 B1 U1 14:41 15:21 800
2 U1 B0 14:46 15:26 400
3 B0 U0 14:51 15:34 600

��

����

����

����

����

�����

�����

�����

�����

�����

�����

���	�����������������
�����
���
�����
�����
�����
�����
�����
�����
�	���
�	��

�
��
��

��
�	

��

�
��

����

������
������������������

������
������������������

������
���������������	��

�
��
��
��
���
��
��
��
���
��

�
��
��
��
���
��
��
��
���
��

�
��
��
��
���
��
	�
��
���
��

�
����������������������

�
�����������	����������

�
����������������������

Fig. 7. Stacked area graph showing the bandwidth usage for three transfers.

we will limit the number of requests submitted to the DC of
an end site to only one at a time. We will then show the effect
of bandwidth reservations on the data transfers involving large
files.
We consider two end sites, BNL and UMICH, between

which the data transfers will happen. We then consider three
pairs of end hosts between which the individual files will be
transferred. The pairs and the submitted requests are shown
in Table I. The first two columns in Table I show the source
and destination of the submitted request. The third column
shows the volume of data that needs to be transferred. The
fourth column shows the start time, i.e., the time when the
data will become available for transfer. The fifth column shows
the time by which the request would like the data transfer to
finish. Note that in our implementation, we use UNIX epochs
for storing time values. The last column shows the maximum
bandwidth that the request can use.
Source B1 first submits its first request to the DC of BNL.

Source U1 then submits its request to the DC of UMICH.
Source B0 then submits its second request to the DC of BNL.
As there was enough bandwidth available within the end sites
and the intermediate WAN domains, all the three requests were
satisfied. We are allowed to reserve a maximum of 2 Gb/s
between BNL and UMICH at any given time. Table II shows
the amount of bandwidths and the durations for which these
bandwidths were reserved for each request. We can now make
few observations and explain some of our choices.
First, note that in the Table I, we omitted the port range that

was submitted along with each request. For the above transfers,
each data transfer request is between three different source
and destination pairs. As such, we reserved the bandwidth
for all the ports, i.e., the requests were submitted for ports

0

1 2

3

4

5

6 7

8 9

Fig. 8. Network topology.

TABLE III
REQUESTS BEWEEN NODES 0 AND 9.

Start Time Deadline Volume BW Limit
(secs) (secs) (Gb) (Gb/s)

0 0 4 12 8
1 4 10 12 6
2 3 7 18 6
3 2 5 16 8
4 9 14 16 10
5 8 11 12 5
6 4 9 15 5

0

1 2

3

4

5

6 7

8 9

Fig. 9. Path constructed using the RRPC algorithm.

TABLE IV
OUTPUT OF THE RRPC ALGORITHM.

Reservation Start Time End Time Reserved BW
(secs) (secs) (Gb/s)

0 0 2 6
1 4 10 2
2 N/A N/A N/A
3 3 5 8
4 10 12.67 6
5 N/A N/A N/A
6 5 8 5

(1−65535). Routers can distinguish between individual flows
based on their source and destination ip-addresses. A second
reason for reserving all the ports is the data transfer tool that
we have used, which is GridFTP [10]. GridFTP uses a wide
range of ports for performing data transfers (as opposed to
single standard port for scp or ftp).
Second, why have we chosen GridFTP as the data transfer

tool? In our experiments, we were unable to scale scp or ftp to
use the large amount of bandwidth that we were reserving for
individual data transfers over long distances. We believe the
reason is the inability of a single TCP flow to scale to large
bandwidth values when the RTT becomes large. As shown
in our experiments, gridFTP can perform data transfers using
multiple TCP flows in parallel, and thus can utilize large
bandwidths much more efficiently. This brings out another
important discussion on the ability of data transfer applica-
tions or transport protocols to utilize the reserved bandwidth.
However, we consider this discussion out of scope for this
paper.
Third, from Table II, one can observe that the amount of

time for which the bandwidth is reserved is slightly more than
what is required (approximately 20% larger). The reason we
are doing this is the overhead of the gridFTP data transfer tool.
We observed that GridFTP needs some additional bandwidth to
transfer its meta data related to multiple parallel TCP streams.
Figure 7 shows a stacked area graph for the amount of

bandwidth used by all three data transfers. The x-axis shows

the time, and the y-axis shows the amount of bandwidth. There
are three bands within Fig. 7. The bottom band shows the
instantaneous bandwidth used by the data transfer correspond-
ing to request #1. It is using a bandwidth of 800 Mb/s, and
transferring a 200 GB file. We can see that the amount of used
bandwidth does not remain constant due to the use of TCP as
the underlying transport protocol. We can also observe that
due to the use of multiple TCP streams in GridFTP, it can
start utilizing the available bandwidth almost instantaneously.
Furthermore, it seems that the bandwidth usage is a little below
800 Mb/s. This is because of the overhead of metadata used
within GridFTP. Similarly, the middle band corresponds to
request #2, uses 400Mb/s, and transfers a 100 GB file. The top
band corresponds to request #3, uses 600 Mb/s, and transfers
a 160 GB file. We can see that all the three transfers are using
the correct bandwidth that was reserved for them.

C. Multiple Requests (RRPC Algorithm)
Now that we have shown the successful reservation and

utilization of bandwidth for individual flows, our goal in this
section is to show the operation of the RRPC algorithm. We
consider an example network shown in Fig. 8 with nodes 0 and
9 as the end points. The seven reservation requests are shown
in Table III. All the requests will be submitted at the same
time to the DC. Figures 10(a)- 10(k) shows the BAGs of all
the links in the network shown in Fig. 8. Note that different
links have different BAGS because there could be multiple
users with different reservations at different times.
Figure 9 shows the path constructed by the RRPC algorithm,

and Fig. 10(l) shows the BAG along this path. Figure 10(l)
also shows how the requests fit into the BAG of the con-
structed path. Table IV shows the schedule constructed for the
submitted requests by RRPC. It was not possible to satisfy
requests #2 and #5. We can now make end-to-end reservations
according to the generated output schedule.

V. RELATED WORK

There has been a large amount of experimental as well as
theoretical research performed in the area of network QoS.
Here we discuss some of the work which is most relevant to
this paper.
In [14], Katramatos et al. presented a tool called Terapaths

that can be used to make end-to-end bandwidth reservations.
Terapaths, however, can only reserve bandwidth for fixed non-
flexible requests; one request at a time. In contrast, one of the
important goals of the work presented in this paper is to be
able to intelligently schedule multiple and flexible requests.
In [1], Ayyangar et al. proposed extensions to the RSVP-

TE protocol [2] that describes how end-to-end label switched
paths (LSPs) can be established from individual LSP segments.
However, such an extension is incapable of and does not aim
to determine the appropriate amount of bandwidth to reserve
for multiple flexible requests. In other words, their proposed
protocol does not have the intelligent QoS component that
we develop in this paper. MPLS traffic engineering (TE)
software [15] by CISCO enables traffic engineering only on

Gb/s

secs
2 4 6 8 10 12 14

12

0

14

(a) BAG for link 0− 1.

Gb/s

8

12
10

secs
2 4 6 8 10 12 140

(b) BAG for link 1− 2.

Gb/s

7
9

5
secs

2 4 6 8 10 12 140

(c) BAG for link 2− 3.

Gb/s

10
14

6

secs
2 4 6 8 10 12 140

(d) BAG for link 2− 6.

(e) BAG for link 3− 4.

Gb/s

8
12

6

secs
2 4 6 8 10 12 140

(f) BAG for link 4− 5. (g) BAG for link 4− 7.

Gb/s

3

8
10

secs
2 4 6 8 10 12 140

(h) BAG for link 5− 8.

Gb/s
12

7
6

secs
2 4 6 8 10 12 140

(i) BAG for link 6− 4.

Gb/s

8
12

6
secs

2 4 6 8 10 12 140

(j) BAG for link 7− 8. (k) BAG for link 8− 9. (l) Final BAG with accom-
modated requests.

Fig. 10. BAGs for the links within the network.

MPLS enabled networks. It uses constraint-based-routing and
uses RSVP to establish MPLS tunnels across the backbone. In
contrast to MPLS-TE, our architecture can work with multiple
WANs employing heterogenous QoS enabling technologies.
As an example, in our experimental results, Diffserv and PBR
were used at end site LANs whereas ESnet and Internet2
employed MPLS within WANs. Furthermore, MPLS traffic
engineering cannot accommodate the type of deadline driven
flexible requests that we consider in our work.
In [17], McKeown et al. proposed a standard called Open-

Flow that aims to provide an interface to update routing/flow
tables within routers and switches. Once a router is OpenFlow
enabled, one can use OpenFlow controller to update routing
tables. In [7], Curtis et al. proposed another architecture, called
DevoFlow, as a modification to the OpenFlow. DevoFlow was
shown to perform better than OpenFlow on high-performance
networks. OpenFlow and DevoFlow, however, are not available
on most commercial routers. As an example, all the routers
used in our experiments do not support either of these. As
a result, we developed the router configuration drivers by
using the API provided by the router vendors. Once OpenFlow
or DevoFlow are adopted by major router vendors, we can
add their controllers as one of the component within our
LAN-manager to configure routers. In [22], Sherwood et al.
used OpenFlow as the underlying mechanism, and introduced
FlowVisor that can be used to reserve the desired resources
(e.g., bandwidth) within real world networks. In contrast to our
work, the bandwidth reservations in their deployed system had
to be made manually via request submissions to a network
administrator. Furthermore, the FlowVisor does not aim to
intelligently handle multiple and flexible resource reservation
requests as we do in our work. In [23], Wilson et al. developed
a deadline aware delivery control protocol called D3. In
contrast to our work, D3 requires explicit modifications to the
routers within the network. Furthermore,D3 works within data
center networks and proposes modifications to the underlying

transport layer protocol. In contrast, our QoS architecture
works across WANs and can accommodate any underlying
transport layer protocol. NetStitcher [16] is another system
that proposes to use left-over bandwidth at different times to
transfer data between data-centers at multiple locations. How-
ever, the performance of NetSticher depends on an imperfect
knowledge of traffic conditions. Our proposed intelligent QoS
architecture maintains this required bandwidth knowledge, and
can perform efficient data transfers between different sites. As
a result, NetSticher could use our proposed system to better
manage and schedule the left-over bandwidths.
In [21], Sharma et al. developed an algorithm to schedule

multiple and flexible resource reservation requests. However,
this algorithm works only when the source and destination
are connected via exactly one path, and cannot work for
a general network topology. Furthermore, in [21], authors
present simulation results and do not deploy their algorithm
on real networks. There are few other theoretical works (see
e.g., [11], [12], [19]) that are similar to [21] and consider the
scheduling of flexible resource reservation requests. For the
general overview of QoS based routing, we refer readers to a
comprehensive survey in [24].

VI. CONCLUSION
We have presented the design and implementation of an

intelligent QoS system. The system can guarantee end-to-end
network QoS for multiple and flexible resource reservation re-
quests. A major component of the developed system is a poly-
nomial time scheduling algorithm called RRPC. The RRPC
algorithm performs a joint optimization of path construction
and bandwidth reservation for multiple and flexible resource
reservation requests. We showed such an optimization problem
to be NP-hard. We implemented the intelligent QoS system
on real hardware serving real world production networks. Our
intelligent QoS system do not require any modifications or
new software installation on the routers within the network.

REFERENCES

[1] A. Ayyangar, K. Kompella, J.P. Vasseur, and A. Farrel, “Label
Switched Path Stiching with GMPLS TE,” RFC 5150, 2008.

[2] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and
G. Swallow, “RSVP-TE: Extensions to RSVP for LSP tunnels,”
RFC 3209, 2001.

[3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss, “An architecture for differentiated service,” RFC
2475, 1998.

[4] R. Braden, D. Clark, and S. Shenker, “Integrated services in the
Internet architecture: An overview,” RFC 1633, 1994.

[5] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin,
“Resource reservation protocol (RSVP),” RFC 2205, 1997.

[6] C. Chekuri and S. Khanna, “A PTAS for the multiple knapsack
problem,” In Proc. ACM-SIAM SODA, pp. 213–222, Philadel-
phia, PA, USA, 2000.

[7] A.R. Curtis, J.C. Mogul, J. Tourrilhes, P. Yalagandula,
P. Sharma, and S. Banerjee, “DevoFlow: scaling flow man-
agement for high-performance networks,” In Proc. ACM SIG-
COMM, Toronto, Canada, August 15–19, 2011.

[8] ”ESnet Topology,” http://www.es.net/network/
[9] “The GEANT2 network,” http://www.geant2.net/
[10] “GridFTP Documentation,” http://globus.org/toolkit/docs/3.2/

gridftp/
[11] J. Gu, D. Katramatos, X. Liu, V. Natarajan, A. Shoshani,

A. Sim, D. Yu, S. Bradley, and S. McKee, “StorNet: Co-
scheduling of end-to-end bandwidth reservation on storage and
network systems for high-performance data transfers,” in Proc.
IEEE INFOCOM, Workshop on High-Speed Networks, Shang-
hai, China, April 10–15, 2011.

[12] R.A. Guerin and A. Orda, “Networks with advance reservations:
The routing perspective,” in Proc. IEEE INFOCOM, pp. 118–
127, Tel-Aviv, Israel, March 26–30, 2000

[13] “Internet 2–Topology,” http://www.internet2.edu/observatory/
archive/data-collections.html#topology

[14] D. Katramatos, D. Yu, K. Shroff, S. McKee, and T. Robertazzi,
“TeraPaths: End-to-end network resource scheduling in high-
impact network domains,” Intl. Journal On Advances in Internet
Technology, vol 3, no. 1–2, pp. 104–117, 2010.

[15] “MPLS traffic engineering,” http://www.cisco.com/en/US/docs/
ios/12 0s/feature/ guide/TE 1208S.html

[16] N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez, “Inter-
datacenter bulk transfers with NetStitcher,” In Proc. ACM SIG-
COMM, Toronto, Canada, August 15–19, 2011.

[17] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow:
enabling innovation in campus networks,” ACM SIGCOMM
Computer Communication Review, vol 38, no. 2, pp. 69–74,
March 2008.

[18] “OSCARS: On-Demand Secure Circuits and Advance Reserva-
tion System,” http://code.google.co-m/p/oscars-idc/

[19] K. Rajah, S. Ranka, and Y. Xia, “Advance reservation and
scheduling for bulk transfers in research networks,” to appear
IEEE Transactions on Parallel and Distributed Systems.

[20] S. Sharma, D. Gillies, and W. Feng, “On the goodput of TCP
NewReno in mobile networks,” In Proc. International Confer-
ence on Computer Communications and Networks (ICCCN),
Zurich, Switzerland, August 2–5, 2010.

[21] S. Sharma, D. Katramatos, and D. Yu, “End-to-end network
QoS via scheduling of flexible resource reservation requests,”
In Proc. ACM/IEEE Supercomputing Conference (SC), Seattle,
WA, November, 12–18, 2011.

[22] R. Sherwood, G. Gibb, K. Yap, G. Appenzeller, M. Casado,
N. McKeown, and G. Parulkar, “Can the production network
be the testbed?,” In Proc. USENIX OSDI, Vancouver, Canada,
October 4–6, 2010.

[23] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron, “Better
never than late: Meeting deadlines in datacenter networks,” In
Proc. ACM SIGCOMM, Toronto, Canada, August 15–19, 2011.

[24] O. Younis and S. Fahmy, “Constraint-based routing in the
internet: Basic principles and recent research,” IEEE Commu-
nications Surveys & Tutorials, vol. 5, no. 1, pp. 2–13, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

