The two formulae implemented for the red and blue curves of figure 8
of the note (up to an irrelevant overall normalization factor K that is the
same for both) are
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First note that the two equations are identical in form. Also, in the eikonal
limit k) < *F = x4 = xp and the integrands are identical; it is only in
the k cutoff, where k| = xF, that there is a difference in the formulae.

If T alter Eq. (1) such that the upper bound of the k integration does
not include the 1 — x4 piece (specifically
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) and then plot this and Eq. (2) on the same graph, I get Fig. 1.
One can exploit the chain rule and the known inverses xi(rg) and
xp(zy) to plot the two implementations on the same footing. Specifically
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Fig. 2 shows ANV /dep(2p) and ANASW Jdep(zp). ANCLY /dz, (z) and
dNASW /dx, (z) are shown in Fig. 3. Note that for the previous two equa-
tions, the upper bound of the k integration is changed to reflect the new
coordinates: for Eq. (4) the upper bound is xgF; for Eq. (5), 224+ E.



Figure 1: Eq. (3) in red and Eq. (2) in blue. Note that the “z” axis is not
well defined; these are plots of dNCLV /dx, (x1) and dNAW /dxp(xg) on
the same graph. Other than the tail of the red curve (where 1 — z effects
kick in) and an overall normalization factor, this is the same as Fig. 8 from
the Cole Horowitz note.

Figure 2: Plot of AN®LV /dxp(xg), Eq. (4), in red and dNAW /dzp(xg),
Eq. (2), in blue.
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Figure 3: Plot of dN“™V /dx | (z4), Eq. (3), in red and dN4W /dx | (2,),
Eq. (5), in blue.



