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This is the second draft of the outline of a report describing the comparison of various pQCD
based formalisms treating the energy loss of hard partons in a thermal quark-gluon plasma for a
simplified geometry. Specifically, we compare the predictions of the WHDG and ASW, and Higher
Twist (HT) formalisms in the opacity expansion, and of the BDMPS-Z and AMY formalisms in the
multiple soft scattering approximation.

I. DETAILED COMPARISONS OF MODELS

A. ASW

The ’ASW-formalism’ calculates parton energy loss based on a path-integral formalism [1-3]. The path-integral can
be evaluated in two different approximations:

a. Multiple soft scattering limit: Technically, this is a saddle-point approximation of the path integral. For the
case of infinite in-medium pathlength, the result coincides with the BDMPS expression for parton energy loss
[2]. For this reason, we refer to this limit sometimes as ”BDMPS-limit”.

b. Opacity expansion: Technically, this is an expansion of the integrand of the path integral in powers of (density
times path-length). The GLV N = 1 opacity result reproduces our expression [1] on the level of the Feynman
diagrams and the analytic expression for the ω- and kT -differential gluon energy distribution.

1. Probability distribution of energy loss

Figs. 1 and 2 show results from the ASW multiple soft scattering limit. (All results have been computed with
αs = 0.3.) First, we plot the probability P (∆E/E) - the so-called quenching weight - that a light quark loses a fraction
of its energy. The information about P (∆E/E) is contained in three pieces:

1. ”Untouched survival”: This is the discrete probability that a parton does not interact with a medium of length
L and that it loses no energy. This probability is represented by a color-coded dot at ∆E/E = −0.05.

2. ”Survival with finite energy loss”: This is the continuous probability that a parton makes it through a medium
of length L but loses a finite fraction ∆E/E during its passage. This is denoted by the color-coded curve at
finite 0 ≤ ∆E/E ≤ 1.

3. ”Death before arrival”: In general, if one shoots a particle into a wall of thickness L, it can get stopped on its
journey before reaching the length L. This probability is denoted by the color-coded dot at ∆E/E = 1.05.

In general, as one increases the average energy loss (i.e. as one increases q̂),

• the probability of untouched survival decreases,

• the probability of survival with finite energy loss shifts to larger values of ∆E/E,

• the probability of death before arrival increases.

This is seen clearly in all the plots shown for P (∆E/E). The most extreme curve is that for E = 10 GeV and L = 2
fm. Requiring an energy loss of ∆E = 4 GeV in this case amounts to > 40 percent probability of untouched survival
but 30 percent probability of death before arrival. This comes close to an all-or-nothing scenario, where a particle
either goes through without medium-modification or gets stuck, but emerges with relatively small probability as an
object with reduced energy.
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FIG. 1: Probability of energy loss, see the text for explanations, for a light quark of E = 100 GeV with L = 2 fm (plot on the
left) and L = 5 fm (plot on the right). The legends on the plots indicate the average energy loss and the corresponding value
of the transport coefficient q̂.

FIG. 2: Id. to Fig. 1 but for a light quark of E = 10 GeV.

2. Energy spectra of radiated gluons

We now turn to the corresponding spectra: The multiple soft scattering limit suppresses the production of infrared
gluons by a destructive interference effect. As a consequence, all spectra are peaked at finite gluon energies. In general,
the radiated gluons become harder as one increases the average energy loss (i.e. as one increases q̂). If the projectile
energy is sufficiently large and the in-medium pathlength is sufficiently small, then the radiated gluons carry small
fractions of the projectile energy. This is the case for a projectile quark energy E = 100 GeV shown in Fig. 3.

However, if the projectile energy is too small, see Fig. 4, one faces a particular problem: One calculates the
radiated gluon spectrum as if the parton would propagate through a medium of path-length L, though with finite
probability the parton does not have sufficient initial energy to make it through L, and gets stuck before. In the
present calculational framework, finding yield in the spectrum for ω > E, i.e., above the kinematical boundary, signals
that one has assumed that the particle propagates through a length L though its probability of ”death before arrival”
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FIG. 3: Energy spectrum of radiated gluons, for a light quark of E = 100 GeV with L = 2 fm (plot on the left) and L = 5
fm (plot on the right). The legends on the plots indicate the average energy loss and the corresponding value of the transport
coefficient q̂.

is finite.

FIG. 4: Id. to Fig. 3 but for a light quark of E = 10 GeV.

The limitations of the high-energy eikonal approximations used in the derivation of the path-integral formalism from
which both the multiple soft scattering limit and the opacity expansion stem, were discussed in the original papers
[1-3], together with a comparison of both limits. These limitations and the comparison between both approximations
have been recently re-analyzed in much detail in [4]. At this point, let us mention that they were, together with the
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need of a reliable framework for computing more differential observables like particle correlations or jet shapes, the
motivation to include finite energy corrections in the formalism, both at the level of the DGLAP evolution equations
[5] or in the form of Monte Carlo algorithms for final state radiation [6-9]. In this respect, it should be noted that
large values of the transport coefficient were required to reproduce RHIC data on single particle suppression[10-15]
and back-to-back correlations [12,15], extracted in analysis using the ASW multiple soft scattering limit through
the quenching weights for different models for the medium produced in the collisions. But similar values have been
obtained using the mentioned recent developments [5,8] which do conserve, by construction, energy-momentum both
at the one-splitting level and in the parton shower as a whole. This finding confirms the validity of the ASW formalism
for phenomenological studies of jet quenching.

3. Treatment of kinematic uncertainties

Here we expand on some of the statements made in the last paragraph: It had been stated as early as 2000
that [16] ” ... the BDMPS-Z formalism is based on the assumption of small transverse gluon momentum |kT ≪ ω
while we find the main contribution to radiative energy loss for |kT | = O(ω). Both features question the validity
of the BDMPS-Z formalism ...” The basic observation in this work and several other early papers [1-3] is that the
calculations of quenching weights P (∆E/E) involve integrals over transverse gluon momenta

∫
dkT fintegrand(kT ) [17].

If the integrand fintegrand(kT ) were known without kinematic approximations, then this integrand would vanish in the
kinematically forbidden region kT > ω, and it would approach this forbidden region in a physically reasonable way.
In such a case without approximation, one would not need to worry about the upper bound of the kT -integral and
one could take it to infinity, since it is the physics of the integrand, which cuts off the integral.

In the high energy approximation |kT | ≪ ω, however, the integrand fintegrand(kT ) does not vanish for |kT | > ω.
The kT -integral must then be cut off ”by hand”. Technically, the kT cut off can be varied in the ASW formalism
by varying the parameter R on the level of the quenching weights. The early ASW works [1-3] knew about and
commented on the uncertainties arising from this kT -integration. Several of these works also varied kinematical cuts
to quantify these uncertainties. These limitations and the comparison between different small-x approximations have
been re-analyzed recently and expanded in much detail in [4]. This is discussed in other sections of this document
(point to section).

We note, however, that strictly speaking, varying the upper cut-off of the kT -integral does not allow one to fully
quantify the theoretical uncertainties associated to the approximation |kT ≪ ω. This is so, since the problem with
the approximation |kT | ≪ ω is not solved by cutting off the integral for kT > ω. Rather, the problem remains that
the approximate evaluation of the integrand is also unreliable in the entire physical region |kT | = O(ω). The proper
solution to this problem is hence not an ad hoc modification of the upper bound of the integral, but an improved
calculation of the integrand, which does not rely on |kT | ≪ ω. Such an improvement is a rather automatic by-product
if one models parton energy loss with Monte Carlo algorithms for final state radiation [6-9]. Aside from several physics
motivations, this was one of the main technical reason for turning towards the formulation of parton energy loss in
event generators, which do not require any approximation of the form |kT ≪ ω. We refer to this fact often as exact
energy-momentum conservation at each splitting.
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