1 Light Cone Coordinates: Definitions, Identities

A four-vector is not bold-faced (e.g. p, k), a three-vector is bold-faced with
a vector symbol (e.g. P, k), and a transverse two-vector is bold-faced with-
out a vector symbol (e.g. p, k). Minkowski four-vectors are written with

parentheses, (); light-cone four-vectors with brackets, [].
p="p°,p) =" p",p)

We will use non-symmetrized lightcone coordinates:

p+:p0+pz
p=p’—p
p=p.

The inverse transformation is then
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p°=§(p++p)
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z_ + _ -

P 2(p )

p=p.

The Minkowski dot product in lightcone coordinates is:

1 _ _
p~k=p0k‘°—pzkz—p-k=§(p+k +p kY)-p-k

The length of a vector using lightcone coordinates is then:

p-p=pp —p-p.

2 Derivation of WHDG Kinematic Limits

First, see Fig. 1 for notation. For a massless parent parton of momentum
P, a massless radiated gluon of momentum k, and a final massless parent

parton momentum of p we have that

P: (E7E707O) = [E+?O70]7

(10)
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Figure 1: One of the diagrams contributing to the first order in opacity
matrix element. q is the momentum transfer between the parent parton
and the in-medium scattering center. k is the momentum carried off by
the radiated gluon. z is the distance from the hard production vertex of
the parent parton and the scattering center. Note that the parent parton
emerges with momentum P from the blob on the left. Figure adapted from
Djordjevic and Gyulassy, Nucl.Phys.A733:265-298, 2004.

where (,) denote the usual 4-momenta, [,] denote light-cone momenta, and
we choose the normalization between the two as ET = 2F. Taking x to be
the fraction of plus momentum carried away by the radiated gluon then

k=[zE" K} k] (11)
TxEt
_ 2
p=l0-ap W a k) (12)

The assumption of eikonality requires that the parent parton continues
essentially along its original path. This clearly implies p™ > p~; i.e. that
radiating a gluon doesn’t make the parent parton go backwards. Similarly
we require that the radiated gluon go in the forward direction, kT > k—;
i.e. radiative energy loss does not lead to an energy gain. The first of these
conditions implies that (k; = |k, |)

(1-— x)E+ > lqL —ki|=ki, (13)

where we note that ¢ = VOET < k for E > T'; the second condition
that
sET > k). (14)

Taking the &k, integral cutoff to occur precisely at equality for these



conditions leads to

Emaz = min(z, 1 — z)E* (15)
=2min(z,1 —2)E (16)
~2x(l —2)E, (17)

where the last line is used in the WHDG implementation for convergence
reasons and makes little difference in the final result (see the last TECHQM
meeting).

3 On Mass Shell Gluon

First note that Eq. (11) implies that the massless gluon is always on shell,
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k
k-k:xE+mEL+—kL-kL:o. (18)

Specifically, if we invert back to 4-momenta the inner product k- k =0
is preserved for all x, k|, and F (as it must be):

1 Kk? 1 Kk?
_ + L + 1
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1 +\2 2 ki 2
_Z (xE ) —2]@_4—W —k’J_:O. (20)

We are of course done. Nevertheless Urs specifically claimed that when
k1 = kmae then w = 22¢F = 2w. This apparent contradiction (that the
gluon appears to be off shell) is due to naively taking w = kT /2. While
this is valid when E+* — oo keeping k| fixed, this assumption is not valid
near the cutoff k; ~ xE™. Plugging ke = rET into Eq. (19) yields

M2 (pEY 0, 2ET 1), (21)

Clearly we have w = kpqr and k- k =0 when k) = kpgz-

Ultimately the matrix element calculation assumes eikonality; i.e. k| <
xET. Unfortunately the derived integrand doesn’t know about this assump-
tion, and it has nonzero support for k; > xET. WHDG imposes this as-
sumption onto the &k integration by cutting off when equality between the



quantities is reached, i.e. ke = *ET = 2xE. There is clearly at least
an O(1) multiplicative uncertainty in the determination of k4, that will
result, at the current level of approximation and as described in the note, in
a large systematic theoretical uncertainty in the calculation of any physical
observable.



