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This is the second draft of the outline of a report describing the comparison of various pQCD
based formalisms treating the energy loss of hard partons in a thermal quark-gluon plasma for a
simplified geometry. Specifically, we compare the predictions of the WHDG and ASW, and Higher
Twist (HT) formalisms in the opacity expansion, and of the BDMPS-Z and AMY formalisms in the
multiple soft scattering approximation.

I. JET QUENCHING FORMALISMS: OVERVIEW

The first section contains an introductory review of the theory of jet quenching in perturbative QCD. It discusses
collisional and radiative energy loss, and gives a brief overview of the major formalisms for radiative energy loss:
BDMPS-Z and AMY in the multiple-soft scattering limit applicable to a “thick” medium, WHDG/GLV, ASW, and
Higher Twist (HT) in the opacity expansion applicable to a “thin” medium.
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FIG. 1: The landscape of pQCD based jet quenching formalisms. Arrows indicate pairs of formalisms for which detailed
analytical and numerical comparisons are presented.

II. THE QUARK-GLUON PLASMA “BRICK” CHALLENGE

This section describes the “QGP Brick” challenge as formulated in the TEC-HQM Wiki. Definition of the “original
brick” and the “Wiedemann brick”, as well as the definition and motivation of the “observable” Rg.

III. DETAILED COMPARISONS OF MODELS
A. WHDG and ASW-OE
[Coordinated by William Horowitz and Brian Cole.]
1. Introduction
In this section we will (1) make detailed comparisons of the radiative part of the WHDG calculation [? ], namely
DGLV [? ], with ASW-SH [? ], (2) discuss the importance of the definition of x and the kinematic cutoffs used to

enforce the assumptions used in deriving the energy loss formulae, and (3) give quantitative brick results comparing
the radiative and elastic components of WHDG.



Production k
B y— .
P q < P ;:
—pt Fragmen-
- T - tation

In-medium Energy Loss

FIG. 2: (Color online) Cartoon of the production, in-medium energy loss, and fragmentation processes that may occur pertur-
batively for a high-pr parton produced in a heavy ion collision. The labels are P for the initial parent parton momentum, p for
its final momentum, k for the medium-induced bremsstrahlung gluon momentum, and ¢ for the momentum transfer between
an in-medium scattering center and the high-pr parent parton.

FIG. 3: Plot of the single inclusive gluon radiation distribution, dNy/dz, from the WHDG implementation of the first order in
opacity DGLV formula, Eq. (1), in red, and the ASW-SH implementation of Eq. (2), in black, for a 10 GeV up quark traversing
a nominal, 2 fm long static brick of QGP held at a constant 7" = 485 MeV. The point at « = 1 indicates the integrated weight
of dNy/dzx in the ASW-SH implementation for z > 1.

2. Making GLV=ASW-SH and Model Implementation

One of the major driving forces in the creation of the TECHQM collaboration was the realization that not only do
the physics assumptions made in a derivation have an impact on the predictions of experimental observables such as
R a4 but also all the modeling assumptions. An excellent case in point comes when one attempts a naive comparison
between the single inclusive gluon distribution implemented in a massless quark and gluon version of the radiative
piece of WHDG and the one found from the ASW-SH code [? ] for the opacity expansion (see Fig. 2 for a cartoon
of the perturbative process and definitions of symbols we will use throughout the section). Both purport to compute
the single inclusive distribution of gluon radiation, dN,/dz, to first order in opacity [? ? ? ] for a medium of
Debye-screened colored static scattering centers [? ]. See Fig. 3, which shows dNJVHPS=Rad /qy and dNSW=SH /dy
for a nominal 10 GeV quark jet in a static, T' = 485 MeV plasma of length 2 fm[1]. The DGLV formula for the first
order in opacity energy loss is [? |:

dNDGLV 20 SL 2 k- k — 2 _ 32q- k — k — 2 2
dz mA (q2 +M2) [(k— q)? +52] (k2 +ﬁ2) 22F
(1)
where 32 = mg + 1’2Mq2 (with mg the effective thermal mass of the radiated gluon and M, the mass of the radiating
parent parton) and p(z) is the probability distribution for the distance to the first scattering center[2]. Alternatively




the result for ASW-SH [? ], which does not include the effect of a thermal gluon mass, is:

deASW—SH _ 2CRas L /quko 12 k-qk—q)?—22M2q- (k—q) /dz L cos (k —q)? + 22 M2 o(2)
dw ™A (@ +12)? [(k — q)2 + 22M2] (K2 + 22 M2) 2w
(2)

If we take w = xE (this will be discussed further below) in Eq. (2) and my = 0 in § in Eq. (1), then we see that
Egs. (1) and (2) are, in fact, identical! So what happened between the formulae, Egs. (1) and (2), and the curves
in Fig. 37 Implementation. It turns out that there are a number of decisions that one must make in going from the
highly differential equations to their integrated result, dNy/dz. These are summarized in Table I.

WHDG ASW-SH
Emax 2z(1 —z)E zFE
z Ty TE
Qmax 3ukE 00
p(z) 2e72/L0(2) /L O(L — 2)0(2)/L
L/X\ |Lpo = Lp x 97a?/(2p%) 1
s 0.3 1/3
mg; Mg 1/N25 /2 0; 0

TABLE I: Table of differences between the implementation of Egs. (1) and (2) in WHDG and in ASW-SH.

If one alters the radiative energy loss part of WHDG to have all the assumptions used in the ASW-SH code, then
one finds agreement within numerical precision; see the Top Left plot in Fig. 4. In this case one

e Sets the thermal gluon mass to 0.

e Sets the thermal quark mass to 0.

o Uses kmax = E, where kpax is the maximum allowed value of kr = |k|.
e Uses the ASW scattering center distribution.

e Fixes L/A = 1.

e Uses quax = 0.

e Uses a, = 1/3.

One can see from Figs. 4 and 5 the quantitative progression from exact agreement when the same assumptions are
made to the result observed in Fig. 3. The progression systematically removes the changes given in the above list
in reverse order. There are numerous lessons to be learned from Figs. 4 and 5. That the changes in a,, M, and
gmax lead to small differences in dN,/dx is not a surprise: «, differs by only 10%; M, for WHDG is small; and it
has been known for a long time that dN,/dx is not sensitive to changes in gmax. Also not surprising is the huge
difference when L/ is allowed to vary. While at the level of dN,/dx one can simply scale the results to account for
a varying L/, this is not true once the distribution has been folded multiple times into a Poisson convolution; note
that the ASW-SH code [? ] only gives the Poisson convolution results. The differences seen in the dN,/dz from the
two scattering center distributions seems to suggest only a small dependence on their exact form. The apparent huge
sensitivity to the inclusion of a radiated gluon mass, my, is a surprise. However, due to nontrivial interference effects,
its affect on observables such as R4 4 are actually not particularly large [? ].

8. Interpretations of © and Importance of Cutoffs

The very large changes seen when going from the two numerically different ky,.x values is a surprise given the
assumption of collinearity used in the derivation of the energy loss formulae, Egs. (1) and (2), and warrants further
explanation. Collinearity, kr < zF), is the assumption that radiation is emitted at small angles. To further investigate
collinearity, it is necessary to discuss the specific definition of x further. It turns out that, as noted in the table, the
GLV-descended derivations [? 7 ? ? ] interpret x = x, = kT /P7T as the fraction of light-cone plus momentum
carried away by the radiated gluon. On the other hand the ASW-SH derivation [? ? | defined z = x5 = k°/P° as
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FIG. 4: First half of the progression from ASW-SH to the radiative piece of WHDG. The black curve in all figures represents
ASW-SH. The red curve in each figure represents the result when the next progressive change away from WHDG is removed.
To aid comparison, the result from the previous plot is shown in blue. Dots at = 1 represent the integrated weight of dN,/dx
for x > 1. Progression proceeds as follows: (Top Left) exact reproduction of ASW-SH (within numerical precision); (Top Right)
as =1/3 to as = 0.3; (Bottom Left) gmax = 00 t0 gmax = v/3pE; (Bottom Right) L/A =1 to L/\ = Lpo = 9ra2pL/(2u?).

the fraction of energy carried away by the radiated gluon. If we denote the usual four-momenta with parentheses and
light-cone momenta with brackets then the on mass shell radiated gluon momentum is

k2
k:(Z‘EE,\/ (xEE)Z_k27k):[x+E+,m7k]7 (3)

where k is the momentum of the gluon transverse to the direction of the parent parton. Similarly, the momentum for
an on mass shell massless parent parton is

L2
p=((-o0)B (1= e0E) ~ (-0 a-K) = [0 - et (A8 q- K, (4)

where q is the transverse momentum transfer to the parent parton from the in-medium scattering center. (For
completeness the original parent parton momentum is P = (E,E,0) = [E",0,0].) Using Eqgs. (3) and (4) one may
derive the exact relationships between z, and zg:

1 kr \’
Ty =57 1+ 1<:CETE) ; (5)
ke \°
TEp = T4+ <1+(:C+E+> >7 (6)

Note that to lowest order in collinearity, where the (assumed small) expansion parameter is kr/xE, the two definitions
of x given above are identical.
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FIG. 5: Second half of the progression from ASW-SH to the radiative piece of WHDG. The black curve in all figures represents
ASW-SH. The red curve in each figure represents the result when the next progressive change away from WHDG is removed.
To aid comparison, the result from the previous plot is shown in blue. Dots at = 1 represent the integrated weight of dN,/dx
for z > 1. Progression proceeds as follows: (Top Left) p(z) = O(L — 2)0(2)/L to p(z) = 2¢~2*/L0(z)/L; (Top Right) kmax = zE
t0 kmax = 22(1 — z) E; (Bottom Left) M, = 0 to M, = p/2; (Bottom Right) mg = 0 to mg = p1/1/2.

A number of assumptions are made in the process of deriving Egs. (1) and (2) in order to simplify the analytics.
Specifically one makes assumptions of: (1) eikonality (i.e. high energy, F); (2) soft radiation, z < 1; (3) collinearity,
kr < xF; (4) parent parton pathlength much longer than the mean free path of the gluon in medium, L > A. Note
that all these assumptions are also made in the BDMPS and AMY formalisms[3]. HT makes all these assumptions
except for (2). It is worth emphasizing that all current pQCD-based energy loss calculations make the assumption of
collinearity.

A simple examination of Egs. (1) and (2) shows that these equations do not “know about” the assumptions made
in their derivation; they do not naturally die out when the approximations used in their derivation break down. As
one example, they have support for all k. Collinearity has traditionally been enforced through the requirement of
forward emission, by cutting off the kr integration for dN,/dx in the UV. In light cone coordinates forward emission
implies that kT > k~. This condition yields

kT < kmax = I+P+ = I+E+. (7)
In Minkowski coordinates forward emission implies that k* > 0. This condition leads to
kr < kmax = T E. (8)

However, requiring forward emission only restricts emission to angles less than 90°, which is still a rather wide angle.
One may go further, in anticipation of exploring the sensitivity of results to variations in the kp cutoff, and define an
angle, 0,.x, with radiation emission not permitted for angles larger than 6,,,¢. Using this as a cutoff criteria yields

Ty BT tan(0max/2), ==y,
kmax = . (9)
2pE sin(Omax), T =2g.



Eqgs. (1) and (2) also have support for all values of . Nonzero weight for dN,/dx for > 1 of course violates energy-
momentum conservation. Requiring the continued forward propagation of the parent parton leads to an additional kp
cutoff that minimally enforces energy-momentum conservation while simultaneously enforcing consistency with the
assumption of eikonality. In light cone coordinates forward propagation implies p* > p~; in Minkowski coordinates
one requires k* > 0. For the light cone coordinate case forward emission leads to

(1—2)B* > g —k| ~ kr, (10)

where ¢ ~ 3T < gmax = V6ET is small compared to most values of k = |k|; for the Minkowski coordinate case
forward emission leads to

(1—zg)E > |q—k| =~ kr. (11)

For each z interpretation there are two cutoffs (e.g. Egs. (7) and (10) for the = z interpretation or Egs. (8)
and (11) for the x = xp interpretation); one should then take this into account when evaluating the k7 integral of
dNgy/dzxdkr. One possibility would be to take the minimum of the two; for instance, using light cone coordinates
and taking 0. = 7/2 this would mean kyayx = min(zy,1 — 2z, )ET. DGLV (and WHDG) use a smoother function,
namely kpax = 4 (1 — x4 )ET. Note that the ASW-SH implementation [? ] does not include a large = cutoff. One
could of course do the same 6,5 analysis for the large x cutoff. However one can see from Fig. 6 that the dN,/dz
distribution is actually rather insensitive to this cutoff; in this sense the dN,/dxdkrdgr integrand respects the small
x approximation rather well.

dNg /0%,
(7]
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FIG. 6: Plots comparing the result for Eq. (1) with kmax = 2+ E" (black) and kmax = 2+ (1 —24)E™ (red) cutoffs for a 10 GeV
up quark traversing a 2 fm static QGP of T" = 485 MeV. Enforcing the small z approximation, and simultaneously enforcing
energy and momentum conservation at the level of dN,/dz, does not make a large difference to the emission spectrum. The
black dot at z1 = 1 represents the integrated weight of dN,/dz4 for z > 1 when kmax = 4+ E ™.

Fig. 7 plots dNy/dxdky along with an illustration of three possible cutoffs for kp: (1) = x4 with Opnax = 7/2, (2)
x = xg with 0. = 7/2, and (3) © = zg with O, = 7/4. Recall that to lowest order in collinearity, the first two
cutoffs are identical; the third is a natural O(1) variation in the cutoff that one can use to estimate the systematic
theoretical uncertainties coming from the collinear approximation. Clearly the assumption of collinearity is badly,
even maximally violated; for values of x ~ p/E, dN,/dxdkr reaches its maximum value at kp ~ zE. For these values
of z the emission spectrum is highly sensitive to the particular value of kmax chosen; dN,/dx ~ k2. .

Since the collinear approximation is so badly broken, it is not a good approximation to take x4 ~ zg. A meaningful
“apples-to-apples” comparison of results, then, can come only when the emission spectra of Egs. (1) and (2) are
plotted using the same variables. Since one is interested in a differential quantity, a Jacobian is required. We choose
to transform z, to xp because, ultimately, one is interested in energy, as opposed to light-cone plus momentum, loss.
In this case the transformed spectrum is given by

dNJ g E sin(Omax) dx dN.
f _ + 9
_ _aNg 12
drg (@e) / ddexE dzydkr (2+(z)). -
d.’E+ kT 27!
—_— = ]_ ].7 - 5 N 1
e (-G ] a
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FIG. 7: Plot of dNy/dxdkr from Eq. (1) for a light quark with all masses set to 0, E = 10 GeV, L = 5 fm, and representative
values of p >~ 0.46 GeV and X ~ 1.25 fm for a medium density of dNy/dy = 1000 similar to RHIC conditions [? ]. Vertical
lines depict the three values of kr discussed in the text as possible cutoffs to enforce collinearity in Eq. (1). Note that with
x =0.025 ~ pu/E, dNg/dxdkr is mazimized near kr ~ kmax, completely in contradiction to the collinear approximation.

Note the change in the upper limit of integration in Eq. (12) as dictated by the basic rules of calculus. An “apples-
to-apples” comparison of dN,/dz g is shown in Fig. 8. Note the very large difference in results for the two collinearly
equivalent definitions of z and that for the result with a reduced 6,,.x. Of course this enormous difference leads to
extremely large systematic theoretical errors (~ 200%) in the extraction of medium parameters [? ].
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FIG. 8: “Apples-to-apples” comparison of Egs. (1) and (2) in the massless limit and for which the x4 dependence of Eq. (1)
has been transformed into zg; see Eq. (12). Also shown is the result when using the zg interpretation and reducing Omax to
/4, a reasonable O(1) variation in the kr cutoff.

It is worth noting that the usual prescription for the Poisson convolution leads to a distribution that does not
conserve energy as the momentum of the parent parton is not dynamically updated. Additionally the convolution,
because (NN,) is almost always greater than 1, almost always pushes the mean energy loss (e) to values larger than
the mean value of x from dN,/dz; therefore the Poisson convolution actually enhances the sensitivity of energy loss
calculations to the larger regions of x for which the derivations are not well controlled theoretically.

4. WHDG Brick Results

In this section we compile the WHDG brick results.
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FIG. 9: Results from WHDG for the Original Brick problem.

B. HT and WHDG

In this section, we describe the radiative part of the higher twist (HT) calculation as applied to the “brick problem”.
In short, the higher twist calculation consists of including a class of medium corrections to the process of jet evolution
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in vacuum, brought about by the multiple scattering of the hard partons in a medium. It is most straightforwardly
derived for the case of Single inclusive Deep-Inelastic Scattering (SIDIS) in a large nucleus, with the nucleus playing
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FIG. 10: Results from WHDG for the Wiedemann Brick problem.
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the role of the medium. While most scattering corrections are always suppressed by powers of the hard scale @2,
a subset of these are enhanced by the length of the medium and these are included in the calculation. Thus, the
expansion parameter in the HT is agGL/Q? where § is the transverse momentum squared imparted to a single parton
per unit length and L is the length traversed by the parton.

Consider the case of DIS on a nucleon (in the Breit frame). The nucleus has a large momentum in the positive light
cone direction A[p™,0,0,0] with p™ the mean momentum of a nucleon. The incoming virtual photon has a momentum
which may always be expressed as [-Q?/2¢~,¢~,0,0]; in the Breit frame ¢~ = Q/+/2. The inclusive cross section to
produce a hard hadron, which carries a momentum fraction z of the initial produced hard quark may be expressed in
a factorized from as,

do

T = [ a6, Q) 55D Q). (14)

d@Q?
where, G(x) is the parton distribution function (PDF) to obtain a hard quark in the nucleon with momentum fraction
x. In the Breit frame the momentum of the incoming quark is xp*t = Q/ V2. Thus the produced quark has an
outgoing momentum ¢~ = Q/v/2. The produced quark is virtual with a virtuality smaller than the hard scale usually
denoted as A\@Q where A < 1. The other two factors are the hard partonic cross section dQ2 and the final fragmentation
function D(z,Q?). The scale in the fragmentation function is the factorization scale and also represents the maximum
possible virtuality of the produced hard jet. The fragmentation function at the scale (Q may be obtained from a
measured fragmentation function at a lower scale using the DGLAP evolution equations,

8Dh(Z’Q2)_as(Q2) 1dy L[
81?)g(Q2) T o /Z ;Pqi(y>Di (y,QZ)- (15)

There is an implied sum over 7 which includes all possible parton that may split off from the hard leading quark
denoted as q.

In the case of DIS on a large nucleus, the above factorized form may be assumed to hold with the only change being
the replacement of the vacuum evolved fragmentation function with a medium modified fragmentation function (as
well as a replacement of the nucleon PDF with a nuclear PDF ). The medium modified fragmentation function contains
the usual vacuum evolution piece Eq. (15) and a medium piece which includes both terms which are interferences
between medium induced radiation and vacuum radiation as well as terms where both the amplitude and the complex
conjugate represent medium induced radiation. Once so factorized, the medium modified fragmentation function can
be used to compute the single hadron inclusive cross section in any process by simply replacing the initial state parton
distribution and hard cross section by those appropriate for the process in question.

For calculations in the brick, we simply ignore all the initial state functions and hard cross sections. We assume that
the quark is produced at one edge of the brick designated as the origin and travels in the negative light cone direction
with a negative light cone momentum ¢~. We assign the quark an initial virtuality @2. Since this is not the Breit
frame in DIS there is no implied relation between ¢~ and Q2. The equation for the medium modified fragmentation
function with an initial LC momentum ¢, virtuality @2, which starts at the location ¢; and exits at C; is given as,

3Dh( ,Q%q~ Cr

G dy [Ty
A / /d<P Ky o000} (2.Q00)

In the equation above, we have dropped the (—)-superscripts on the positions. Note that the medium modified
fragmentation function is now, not only a function of Q2 and z but also a function of ¢~ and ¢. The calculation
of the evolution equation now requires the evolution of a three dimensional matrix (in z,¢~,¢). The medium kernel
Ky~ q2(y,¢) for a quark jet is given as

Ky @20 = {0 - 1= + 1o | [o— 2eos [ ZZE DA (1)

In the soft gluon approximation y — 1, one only keeps the first factor of ¢ in the equation above. In this limit,
the case of a gluon medium modified fragmentation function is obtained by replacing the vacuum splitting function
with the two vacuum splitting functions for a gluon: for a gluon to two gluons and a gluon to quark anti-quark. This
is so far an unverified assumption. Even at this level of approximation, the equations above are far to numerically
intensive to solve. One usually replaces the position dependence with the initial position ( — (;. The evolution
equations now represent the evolution of a two dimensional matrix and these represent the calculations which will be

(16)
¢
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presented in this paper. A further approximation is to also drop the energy dependence and is sometimes presented
in the literature.

The first set of plots represent the default HT calculation which is the medium fragmetation function for a 7°. The
jet is assumed to have energies 20 GeV and 100 GeV and goes through a medium of length 2 fm and 5 fm. The initial
virtuality of the jet for the case of 20 GeV is set to be 100 GeV? and for the case of 100 GeV to be 2500 GeV2.

C. AMY and BDMPS-Z

[Coordinated by Sangyong Jeon, Peter Arnold (?), and Marco van Leeuwen. |

These two formalisms valid in the multiple soft scattering limit differ in essential aspects: AMY is based on a rigorous
field theoretic formulation and a specific perturbative picture of the quark-gluon plasma, but does not account for
vacuum radiation and its interference with the medium induced radiation; BDMPS-Z does account for vacuum-
medium radiation interference, but is based on a representation of the medium as a collection of static scattering
centers. Among the salient discussion points are:

e AMY does not contain interference between vacuum and medium induced radiation;

e AMY implements exact energy and momentum conservation, both in the elementary process and in the radiative
cascade;

e AMY treats the medium dynamically, not as collection of static scattering centers;
e Langevin dynamics is not a good approximation for collisional energy loss;
e AMY and BDMPS both assume collinearity of the radiation.

D. WHDG/ASW-OE and BDMPS-Z

[Coordinated by Marta Verweij and Marco van Leeuwen. ]

The multiple soft scattering approximation is compared with the opacity expansion formalism. For this work the
following energy loss models are used:
Note: It would be good if we can agree on a useful naming convention for all these energy loss models.

e Salgado-Wiedemann multiple soft scattering (BDMPS-Z/ASW-MS) as reported in reference [? ].

e Salgado-Wiedemann Opacity Expansion (ASW-OE): The single hard scattering approximation as de-
scribed in [? ]. It consists of an incoherent superposition of a few single hard scatterings. Originally with a
fixed value for L/X. For this work L/) is calculated from the temperature T' in the medium.

e Wicks-Horowitz-Djordjevic-Gyulassy Opacity Expansion (WHDG rad)[? ]: this model is based on the
GLV opacity expansion [? ] and calculates the radiated gluon energy starting from an analytical expression for
the single gluon emission spectrum to all orders of opacity. For the single gluon spectrum there is a smoothly
cut-off given by the parton energy. Using the average number of emitted gluons the P(AFE) is calculated for
a parton. The energy loss is calculated following the DGLV formulas for radiative energy loss as reported in
appendix B of [? | (WHDG).

Note: Probably the following two sections (Relation between §, p and A and Suppression factor in a brick) should
be moved to earlier in the paper.

1. Relation between §, p and A

The transport coefficient § is defined by [? 7 |

~ drel 2
G= d*qL ——q1, 18
‘/‘ZL <Qqmaz + quJ_ + ( )
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in which T'y; is rate for elastic collisions in the plasma, ¢, is transverse momentum which the parton loses in such a
collision and ¢, is the ultraviolet cut-off. In the eikonal limit, g, >> T, the elastic cross section is

drel CR g4N

_ , 19
d?q.  (2m)? ¢4 (19)
with A the density of the plasma and Cg the Casimir factor. Combining equation 19 with equation 18 gives
2 2 2
72-1.202 -
G = 4ma2CrN In (qmgz> = % 3m (q’n;f> , (20)
I ™ I

with p = /47T the Debeye mass and ¢, the upper limit of the integration. Equation 20 is used to calculate
the transport coefficient in the multiple soft scattering approximation and serves as a direct input for the calculation
of the parton energy loss. For the opacity expansion formalism g and A are the input parameters and ¢ has to be
expressed in them to make a direct comparison between the different formalisms. To calculate 1/\ we take

1 dl’. 4nCRra? 72-1.202 - a?
A /dQQL L dmOro,N %13, (21)
A d?q1 I Tu?
Combining equation 21 with equation 20 the following relation between ¢, ;1 and A arises
p 2 2
with ¢nee = VET.
2. Suppression factor in a brick
The measured hadron spectra at RHIC follow a power law: ZTZX = pi If each hadron loses € energy the hadron
spectrum will look as following;:
dN 1 d 1
= P (23)

dp;  [(L—epndp,  (1—en1pp’

with p; the momentum of the hadron after radiating energy in the medium. Since a hadron does not lose a fixed
amount of energy but there is a probability to lose a certain amount of energy, the nuclear modification factor R44
can be approximated by the weighted average energy loss:

R, = 1 de(1 —€)" "1 P(e), (24)

in which e = AE/E. Because for RHIC energies the hadron p; spectrum is very similar to a power law spectrum with
n = 6.5 for p; > 2. GeV/c [? ] Ry will be used as an approximation for R44.
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FIG. 11: Correlation between R; and ¢ for a primary quark with £ = 20 GeV for different energy loss formalisms. The
horizontal black dashed line indicates Ry = 0.25.
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FIG. 12: The inclusive gluon spectrum for quarks with E = 20 GeV. Note: Spectra for BDMPS-Z/ASW have to be added. We
will request ASW for data tables when we agree on the proposed definitions for ¢ and Rr.

Figure 11 shows the correlation between R; and § for a quark with £ = 20 GeV for two different bricks of length
L =2 fm and L = 5 fm. The input parameters to calculate the energy loss in the different models depend on T
and L. For the calculation of ¢ equations 20 and 22 are used with ¢e = VET. From this figure can be seen that
both opacity expansion formalisms lose more energy at the same density compared to the multiple soft scattering
approximation. For a brick of L = 2 fm a Ry value of 0.25 is reached at ¢ = 17.9 GeV?/fm for WHDG and at § = 9.7
GeV?/fm for ASW-OE while the the multiple soft scattering approximation needs ¢ = 23.1 GeV?/fm to reach the
same suppression. For a brick of L = 5 fm § has to be 1.58, 1.25 and 2.13 GeV?2/fm for respectively WHDG, ASW-OE
and BDMPS to have a suppression of R; = 0.25. In order to reach a similar suppression as measured at RHIC [? ?
? | with the multiple soft scattering approximation and the opacity expansion there is roughly a factor 2 difference
in ¢. The larger energy loss in the opacity expansion formalism is mainly caused by the smaller discrete weights of
the energy loss probability distribution under the same medium conditions.

In figure 12 the inclusive gluon spectra for two bricks of L = 2 and L = 5 fm are shown. These spectra correspond to
a suppression factor R7 = 0.25. Therefor the medium density of each model has been taken differently, see figure 11.
The single gluon spectrum WHDG does not have a tail because in the WHDG calculation the single gluon spectrum
is modified by a factor which smoothly cuts off the spectrum at the energy of the incoming quark £ = 20 GeV.
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FIG. 13: The final quark energy spectrum as function of xtg = 1 — €. The squares at xg = 0 indicate the probability that
a quark is absorbed and at xg = 1 the probability that a quark does not interact with the medium. Solid blue squares:
BDMPS-Z/ASW-MS. Open red squares: WHDG. Solid red squares: ASW-OE.

Figure 13 shows the final quark energy spectrum as function of zp = 1 — € for the two bricks of different lengths
and Ry = 0.25. In the same figure the probability that a parton is absorbed in the medium is indicated by the
squares at xg = 0. At zg = 1 the corresponding discrete weights for all three models are given. The discrete and the
absorption rates of the multiple soft scattering approximation are larger than for the opacity expansions. It seems
that the continuous part of the energy loss probability distribution is more relevant in the opacity expansion. The
BDMPS model seems to behave more like a black-white scenario.

Figure 14 shows contours for different suppression factors R7 as function of the in-medium path length L and the
transport coefficient . Since the typical size of a nucleus is L ~ 5 fm, the relevant path lengths are L < 5. In this
region a relatively small difference in L results in a very large difference in ¢ for a fixed value of R;. A scaling in L is
much more efficient than a scaling in medium density because the energy loss scales with §L2. To achieve a significant
difference in the fraction of lost energy a large step in medium density is needed. The WHDG model requires larger
combinations of ¢ and L than ASW-OE in order to achieve the same suppression factor. This is due to the smooth
cut-off in the single gluon spectrum at the quark energy (F = 20 GeV) in the WHDG model, cf. figure 11. For
small ¢ and small L this is not a dominant effect because the tail of the single gluon energy distribution is shorter
which makes the single gluon spectra of ASW-OE and WHDG and thus the energy loss probability distribution less
different. This is also represented in the crossing points at small § of the two opacity expansion curves in figure 11.

The multiple soft scattering approximation requires larger values for § and L than both opacity expansion formalisms
in order to achieve the same fraction of energy loss. The region in ¢ and L in which a parton survives is more limited
for the opacity expansion than for the multiple soft scattering approximation. This is mainly due to the larger
probability to lose no energy in the multiple soft approximation at the same medium density.
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FIG. 14: In-medium path length versus transport coefficient for BDMPS (solid lines), WHDG (dashed dotted lines) and ASW-
OE (dashed lines) energy loss models. The lines represent isolines from brick calculations for Ry = 0.05 (green), 0.15 (red),
0.25 (blue) and 0.45 (black). This is for quarks with E = 20 GeV.

IV. BASELINE PLOTS

This section will present and discuss the plots generated by the different formalisms for various parameters of the
QGP Brick challenge. For each model, we will show the following six plots:

1. The inclusive gluon spectrum dN,/dx g for the following parameters: primary parton = quark, L = 2 fm, E = 20
GeV, Rg = 0.25;

2. The inclusive gluon spectrum dN,/dz g for the following parameters: primary parton = quark, L = 5 fm, E = 20
GeV, Rg = 0.25;

3. The final spectrum dN,/dxg for the following parameters: primary parton = quark, L = 2 fm, F = 20 GeV,
RS = 0.25;

4. The final spectrum dN,/dzg for the following parameters: primary parton = quark, L = 5 fm, F = 20 GeV,
RS = 025,

5. For each of the models, the range of correlation between Rg and ¢ for a primary quark and L = 2 fm, E = 20
GeV;

6. For each of the models, the range of correlation between Rg and ¢ for a primary quark and L =5 fm, E = 20
GeV.

For (1-4), the inclusive spectrum of gluons (quarks) at the end of the brick should be plotted. For gluons, this is
the spectrum calculated from the “elementary” emission formula; for quarks, this requires the Poisson (or other)
convolution with the probabilistic distribution of scatterers. [This interpretation needs to be confirmed.] For AMY,
both dN,/dxg and dN,/dxg are obtained by solving the rate equations.

For (5) and (6), the whole range of correlation should be shown, when all other parameters of the jet quenching
model are varied, keeping Rg, L, and E fixed.

V. OUTLOOK

This section will summarize the limitations of the validity of the various first-generation formalisms and give
estimates of the inherent uncertainties of their predictions that limit the current theory—data comparison. The
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section will also describe the minimal requirements for all second-generation approaches, which hope to avoid the
most serious of these limitations.

[1] Actually the ASW-SH implementation [? ] is only in terms of the Poisson convoluted energy loss probability distribution,
which we will discuss in detail further below. The comparison shown here actually comes from an independent numerical
implementation of the massless ASW-SH formula by B. Cole that well reproduces the Poisson convolution results of [? ].
In general one needs to consider the distribution in differences in distance between successive scattering centers. However
at first order in opacity there is only one scattering center; as one may always set the initial value of z to 0, p(2) is the
absolute distance to the first scattering center
[3] In GLV and BDMPS (4) is used to neglect poles from propagators multiplied by exp(—uAz) ~ exp(—pA) < 1, where Az is
the distance between successive scattering centers; this approach is probably invalid for L < A ~ 1 fm. On the other hand
AMY uses the central limit theorem in its Langevin approach and corrections are likely for L < 30\ ~ 30 fm; this extra
long path length is also required by the neglect of the interference between vacuum and in-medium induced radiation.

[2



