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Partons traversing a strongly interacting medium lose energy, dominantly
due to gluon radiation. The energy loss of partons in a strongly interacting
medium has been described by phenomenologically different models. We study
the TECHQM brick problem by comparing brick calculations of the multiple
soft approximation with the opacity expansion approximation. The gluon emis-
sion distributions and energy loss probability distributions are compared. An
approximation of the nuclear modification factor RAA is calculated. For a given
suppression factor different initial bulk conditions in terms of temperature T (or
transport coefficient q̂) and parton path length L are needed for the different
energy loss mechanisms.

The multiple soft scattering approximation is compared with the opacity
expansion formalism. For this work we used the following energy loss models:

• Salgado-Wiedemann multiple soft scattering (ASW-BDMPS) [1].

• Salgado-Wiedemann Opacity Expansion (SWOE): The single hard
scattering approximation as described in [1]. It consists of an incoherent
superposition of a few single hard scatterings. Originally with a fixed
value for L/λ. For this work L/λ is calculated from the temperature T in
the medium.

• Wicks-Horowitz-Djordjevic-Gyulassy Opacity Expansion (WHDG)[2]:
this model is based on the GLV opacity expansion [3] and calculates the
radiated gluon energy starting from an analytical expression for the sin-
gle gluon emission spectrum to all orders of opacity. For the single gluon
spectrum there is a cut-off given by the parton energy. Using the average
number of emitted gluons the P (∆E) is calculated for a parton. The en-
ergy loss is calculated following the DGLV formulas for radiative energy
loss as reported in appendix B of [2] (WHDG).

1 Common scale T

The multiple soft scattering approximation and the opacity expansions calcu-
late a energy loss probability distribution which consists of a discrete part p0

indicating the probability to lose no energy and a continuous part p(∆E) caused
by emission of one or more gluons:

P (∆E; R, ωc) = p0(R)δ(∆E) + p(∆E; R, ωc). (1)

1



The quenching weights provided by [1] are used to calculate the energy loss
in the BDMPS formalism. The quenching weights are a function of the charac-
teristic gluon energy ωc and the kinematical constraint R:

ωc =
1

2
q̂L2, (2)

R =
2ω2

c

q̂L
= ωcL =

1

2
q̂L3, (3)

in which the transport coefficient q̂ is defined as

q̂ =
〈k2

t 〉
λ

=
72 · 1.202α2

s

π
T 3. (4)

The input parameters for the calculation the quenching weights for the opac-
ity expansions are the pQCD color screening mass µ, in-medium path length L
and the number of scattering centers 1

λ
:

µ =
√

4παsT (5)

1

λ
= ρσ =

144 · 1.202αs

8π2
T (6)

For the single hard scattering approximation the following input parameters are
used:

ω̄c =
1

2
µ2L = 2παsT

2L, (7)

and analogously to the BDMPS formalism the kinematic constraint:

R̄ = ω̄cL = 2παsT
2L2. (8)

Note that ω̄c is not the same as ωc in the BDMPS approximation and that the
energy loss in the single hard scattering approximation scales with:

∆E ∝ L

λ
ω̄c =

1

2
q̂L2 = ωc (9)

All the input parameters as defined for the BDMPS formalism and opacity
expansions depend on temperature T which makes it possible to make a direct
comparison between the phenomenologically different models.
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2 Brick results

In order to understand better the differences between the energy loss calculation
of the BDMPS formalism and the opacity expansion approach, calculations are
done with a uniform medium and fixed path length L. Although this is not a
realistic scenario for a heavy ion collision it will give insight into the differences
between different energy loss models.
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(a) Comparison of single gluon spectra for
different energy loss formalisms. This is
for a static uniform medium with T = 582
MeV and path length L = 5 fm.
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(b) Energy loss probability distributions
for the different models. The continuous
part of the probability distribution in equa-
tion 1 is shown as function of the energy
loss ∆E and the discrete weights p0 are re-
ported in the legend for each model. This is
for a static uniform medium with T = 450
MeV and path length L = 5 fm.

Figure 1: Comparison of gluon spectra and energy loss probability functions for
different models for two different bricks.

There are differences between the gluon radiation of an in-medium produced
parton for the different models. The single gluon radiation spectra are shown
in figure 1(a). From these spectra the average number of emitted gluons can be
obtained by integrating the gluon spectrum over the gluon energy ω:

〈Ngl〉 =

∫
dω

dI

dω
. (10)
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And the average energy loss per radiated gluon can be calculated as follows:

〈ω〉 =

∫
dω ω dI

dω

〈Ngl〉
. (11)

The obtained values for a brick with medium conditions as in figure 1(a) (L = 5
fm and T = 582 MeV) are given in the first two columns of table 1. If the cut-
off in the single gluon energy spectrum for the WHDG model is set to a large
value (Eparton = 100 GeV) it approximates the Salgado-Wiedemann single hard
scattering approximation (SWOE) in case the temperature T and in-medium
path length are not too small (L ≥ 5 fm and T ≥ 250 MeV). Note that the
gluon spectrum labeled by SWOE is multiplied with the corresponding value
of L/λ depending on the temperature of the medium. The total energy loss,
〈Ngl〉〈ω〉, in the BDMPS formalism is smaller than the two opacity expansions
(WHDG with Eparton = 100 GeV and SWOE).

In figure 1(b) the energy loss probability distribution is shown for a fixed
path length L = 5 fm and a medium temperature T = 450 MeV. The probabil-
ity for a parton to lose no energy, the discrete weight p0, under these specific
medium conditions is given in the legend of the figure. In the BDMPS formal-
ism the discrete weight is much larger (0.24 for BDMPS and 0.01 − 0.08 for
the opacity expansions). This is also reflected in table 1 by the smaller num-
ber of average emitted gluons in BDMPS which defines the discrete weight to
p0 = e−〈Ngl〉. The tail at ∆E > 20 GeV of the continuous weights is much more
significant for SWOE and WHDG with Eparton = 100 GeV than in the BDMPS
formalism. However for RHIC energies this will not be very important because
a typical jet energy is ≈ 10 GeV. The parton loses on average more energy in
the WHDG(Epart = 100 GeV) and SWOE formalism compared to the BDMPS
formalism under the same medium conditions. The average energy loss 〈∆E〉
for a parton with E = 10 GeV corresponding to the P (∆E) distributions from
figure 1(b) (see table 1) is much smaller for the BDMPS formalism than for the
opacity expansion.

〈Ngl〉 〈ω〉 (GeV) 〈∆E〉 (GeV) R8

BDMPS 2.0 13 3.4 0.13
WHDG (E=10 GeV) 3.0 3.2 5.4 5.6 · 10−3

WHDG (E=100 GeV) 5.3 12 8.1 5.3 · 10−2

SWOE 7.2 9.8 9.0 7.7 · 10−4

Table 1: Average number of gluons 〈Ngl〉, average energy loss per gluon 〈ω〉 cor-
responding to figure 1(a). The average energy loss 〈∆E〉 and R8 are calculated
from the energy loss probability distribution P (∆E) with ∆Emax = 10 GeV.
All the reported numbers are for a brick of L = 5 fm and T = 582 MeV
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The nuclear modification factor RAA can be approximated by the weighted
average energy loss:

Rn =

∫
1

0

dǫ(1 − ǫ)nP (ǫ), (12)

in which ǫ = ∆E/E and n is the power of the pt spectrum of the measured
hadrons. Because for RHIC energies the pt distribution is very similar to a
power law spectrum with n = 8, R8 will be used as an approximation for RAA.
In the last column of table 1 the R8 values for the specific brick of L = 5 fm
and T = 582 MeV. Again we see that in the opacity expansion formalism the
suppression is larger than in the BDMPS formalism. In figure 2 R8 is shown
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Figure 2: R8 as function of medium temperature T for a static uniform medium.
The thickness of the medium is fixed at L = 5 fm. The black dashed line
represents R8 = 0.2. R8 has been calculated with E = 10 GeV in ǫ = ∆E/E.

as function of medium temperature for a static uniform medium and a fixed
medium thickness of L = 5 fm. RHIC data have shown that for the high pt

region RAA has a constant value of approximately 0.2 [4, 5, 6]. A R8 value of 0.2
is reached at T = 260 MeV for WHDG with the single gluon energy cut-off of
10 GeV, at T = 290 MeV for WHDG with a cut-off on the single gluon energy
of 100 GeV and T = 500 MeV for BDMPS. We will focus on the differences
between BDMPS and WHDG (Eparton = 100 GeV).

The temperature is not the only property of the medium which influences
the energy loss of a parton traversing a hot dense medium. Another important
property is the thickness of the medium which in figures 1 and 2 is fixed at
L = 5 fm. Figure 3(a) shows contours of L and T for a fixed constant value
of R8 = 0.2. The energy loss of a parton increases if the temperature T is
larger or if the path length L in the medium is longer. Clearly the differences
in temperature for the various opacity expansions is small compared to the
difference with BDMPS. We visualize the differences in required length and
temperature for BDMPS and WHDG by taking the ratio of them. In the the
upper panel of figure 3(b) TBDMPS/TWHDG is shown as function of L and the
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(a) Medium temperature T versus thickness L for a static
medium for 0.2 < R8 < 0.22.
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(b) Upper panel:
TBDMPS/TWHDG as
function of length L for
R8 = 0.21. Lower panel:
LBDMPS/LWHDG as
function of temperature T

for R8 = 0.21.

Figure 3: Mapping of energy loss formalisms BDMPS and WHDG in length L
and temperature T .
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Figure 4: LBDMPS/LWHDG as function of temperature T for different values
of R8.

lower panel shows LBDMPS/LWHDG as function of T . It turns out that a simple
translation can be made between the BDMPS and the WHDG opacity expansion
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formalism. A mapping in L seems to be more universal than a mapping in T .
For the same value of R8 and the same medium temperature the in-medium
path length in the BDMPS formalism is approximately twice as large as in the
WHDG opacity expansion formalism: LBDMPS/LWHDG ≈ 2. This mapping in
L holds for 0.1 < R8 < 0.6. In figure 4 LBDMPS/LWHDG is shown as function
of temperature for different values of R8. It is remarkable that over a wide
range of temperature T and R8 a constant conversion factor between the two
phenomenologically different models can be found.

To further compare the energy loss mechanisms with a mapping in L in figure
5 for both models (BDMPS and WHDG) P (∆E) is shown with L = 2 fm (figure
5(a)) and L = 5 fm (figure 5(b)). The distributions for WHDG (red dotted line)
and BDMPS with L′ = 1.9L (black dotted line) are very similar for the case
L = 5 fm, see figure 5(b). In the tail of the distribution with L = 2 fm, figure
5(a), the black line for BDMPS with L′ = 1.9L starts to deviate. However for
the relevant region ∆E < 20 GeV for small in-medium path lengths the black
and red dotted lines (WHDG) correspond very well.
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(a) Energy loss probability distributions
for the different models: WHDG with T =
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Figure 5: Energy loss probability distributions for different medium thicknesses.

To summarize the contours for a brick which results in R8 = 0.1, 0.2 and
0.4 are shown in figure 6 as a function of the q̂ and L. In case of WHDG the
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transport coefficient is defined as

q̂ = 2w̄c

L

λ
/L2 =

µ2

λ
, (13)

which is the exact definition of q̂ in the multiple soft scattering approximation.
A relatively small difference in L results in a very large difference in q̂ for a fixed
value of R8. We already showed that the models can be mapped by a simple
scaling factor of ≈ 2 in path length L. This is because a scaling in L is much
more efficient than a scaling in medium density because the energy loss scales
with q̂L2. To achieve a significant difference in the fraction of energy that is
lost a large difference in medium density is needed.
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Figure 6: In-medium path length versus transport coefficient for BDMPS (solid
lines) and WHDG (dotted lines) energy loss models. The lines represent isolines
from brick calculations for R8 = 0.1 (red), 0.2 (blue) and 0.4 (black).

3 Discussion

In this analysis the energy loss calculations in the multiple soft scattering ap-
proximation and the opacity expansion for a fixed path length and homoge-
neous medium are compared. The input parameters to calculate the energy
loss in both models are defined in the same way and depend on T and L. The
energy loss in the opacity expansion is significantly larger than in the multiple
soft scattering approximations under the same medium conditions. For example
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the same suppression factor in terms of R8 = 0.2, see equation 12, with fixed
path length L = 5 fm is found at T = 260 MeV for the WHDG in the limit
of infinite maximal single gluon emission energy and at T = 500 MeV for the
ASW-BDMPS model.

The WHDG model with Eparton → ∞ gives similar results as the ASW single
hard approximation (SWOE). The larger energy loss in the opacity expansion
formalism is mainly caused by the smaller values for the discrete weight of the
energy loss probability distribution.

The large differences in necessary temperature in order to obtain the same
suppression seems to be equal to a mapping in L: LBDMPS/LWHDG ≈ 2. If
the length of the brick in the BDMPS calculation is twice as long as in the
WHDG calculation the nuclear modification factor R8 is the same as function
of temperature. Since the transport coefficient q̂ is very steep for a given R8

as function of L this mapping in L is equivalent to a very large difference in
temperature or transport coefficient q̂ as is shown in figure 6. It is not yet clear
which assumptions in the energy loss models cause the sizable differences in the
predicted suppression.
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