
Ordinary Least Square Regression, Orthogonal Regression, 
Geometric Mean Regression

and their Applications in Aerosol Science
Ling Leng1, Tianyi Zhang1, Lawrence Kleinman2, Wei Zhu1

1Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, NY 11794
2 Department of Environmental Sciences, Brookhaven National Laboratory, NY 11973 

Regression analysis, especially the ordinary least squares method which assumes that errors are confined to the dependent variable, 
has seen a fair share of its applications in aerosol science. The ordinary least squares approach, however, could be problematic due to 
the fact that atmospheric data often does not lend itself to calling one variable independent and the other dependent. Errors often exist 
for both measurements. In this work, we examine two regression approaches available to accommodate this situation. They are 
orthogonal regression and geometric mean regression. Comparisons are made theoretically as well as numerically through an aerosol 
study examining whether the ratio of CO to organic aerosol would change with age.
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• Another intuitive approach of taking the middle ground when both X and Y 
are considered random is to simply take the geometric mean of the slope of y 
on x regression line, and the reciprocal of the slope of  x on y regression line. 

• Simplification of the above formula yields: 

• Comparing to the MLE, we notice that the geometric mean estimator is equal 
to the MLE if and only if                     [4]. 

• This means that the geometric mean approach is suitable when the
randomness from X and Y are from the random errors only. That is, when we 
take the functional analysis approach by assuming that ξ is not random.

• It yields a biased estimate unless :                            [5]
• Barker et al (1988) [6] presented a “least triangles 

approach”. They defined a new loss function to 
obtain the regression estimate. This regression 
line would minimize the sum of the areas of the 
right-angled triangles formed from the data 
point and the regression line.

7. Data Analysis 
• Our data are organic aerosol and CO concentration 

measured at 10 different ages (time since the CO was 
emitted). We are examining if the ratio of CO to 
organic aerosol changes with age. On the time scale 
of interest CO is inert so this change would be due to 
the atmospheric reactions forming organic aerosols. 
[7]

• We found it reasonable to assume equal error 
variances for both measurements [7]. That is λ=1. 
This means the  orthogonal regression (OR), 
coinciding with the bivariate normal structural 
model approach in our case, is the most suitable 
model to use. 

• For comparison purposes, we also examined the OLS 
and the GMR models at each age point. It can be 
shown theoretically that the MLE of slope will 
decrease while λ increases. This is reflected from the 
analysis of this particular data set. An obvious 
descending tendency is shown from OR to GMR to 
OLS.

• The estimated regression lines using the GMR and 
OLS approaches fell out of the 95 CI of orthogonal 
regression estimate. The geometric mean regression 
provided closer estimates to the OR than the OLS.

1. The Bivariate Normal 
Structural Model

4. Connection between OR & PCA

2. Maximum Likelihood 
Estimator (MLE) 3. Orthogonal Regression (OR)

5. Inference on OR 6. Geometric Mean Regression

• The mean vector and covariance matrix of X and Y can be easily 
derived as follows:

• Subsequently, we can obtain the maximum likelihood estimator 
of the slope of the regression. Its value, however, depends on the 
ratio of the two error variances                        [1].

• When               , the MLE of      is:

• When               , the MLE of      is:    

[2]
• Inference (hypothesis test, confidence interval) on the slope 

parameter can be carried out similarly using the maximum 
likelihood approach. We consider this the correct approach. In 
the following, we will compare two commonly used regression 
methods when both X and Y are random, the orthogonal 
regression and the geometric mean regression, to this general 
approach. Guideline will be provided on whether and when each 
approach is considered suitable.
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• As illustrated in the following plots, The ordinary least square (OLS) 
estimate (of Y on x) will minimize the squared vertical distance
from the points to the regression line. And the estimate of the slope        
is:                  (this is the case when         in the general modeling 
approach). Alternatively, The OLS estimate (of X on Y) would 
minimize the horizontal distance to the regression line. The orthogonal 
regression takes the middle ground by minimizing the orthogonal 
distance to the regression line.

• The resulting estimate of       is:

• This is the same as the MLE in the bivariate normal structural 
modeling approach  when          .

• This means that the orthogonal regression is suitable when the error 
variances are equal.
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• Suppose both X and Y contain some random errors,     and    , which 
may come from measurement or other resources.  A suitable model is 
as follows.   

where    ,     and    are independent.
• There are two analysis approaches concerning this model: the 

functional and the structural. The basic difference between the two 
approaches is whether to consider     as a non-random variable or a 
random variable following normal distribution with mean     and 
variance     . Since the latter is more general, in the discussion below, 
we will focus on the structural model. 

• Thus, we assume that X and Y follow a bivariate normal distribution:
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• There is a close relationship between the Principle Component 
Analysis (PCA) and the orthogonal regression (OR). 

• For the sample covariance matrix of the random variables (X, 
Y),               ,  its highest eigenvalue is:

The eigenvector corresponding to this eigenvalue is:

Therefore, the slope of the 1st PC  is: 
which is the same as the slope estimator from the orthogonal 
regression. 

• Intuitively, the first principal component is the line passing through 
the greatest dimension of the concentration ellipse, which coincides 
with the orthogonal regression line. 

• Therefore existing statistical inference techniques for the principal 
component analysis can be applied directly to inference of the slope 
parameter,     , from the orthogonal regression approach as shown in 
the following slide.
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• Confidence Interval for     [3]: Let l1 and l2 be the eigenvalues of 
the sample covariance matrix (l1 > l2), 

the 100(1-α)% large sample CI for the slope is 

• Hypothesis Test of 
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• In this work we presented a general bivariate normal structural model 
and inference framework suitable when both X and Y are random in a 
regression scenario. It is shown that the MLE of the slope parameter 
depends on λ, the ratio of the error variances of Y and X. 

• It is shown that ordinary least squares (OLS), orthogonal regression 
(OR), geometric mean regression (GMR) can all be considered as 
special cases of the above general model with λ = ∞, 1, and SYY/SXX

respectively.
• Subsequently, we conclude that the (1) the orthogonal regression is 

suitable when the error variances are equal, and (2) the geometric 
mean approach is suitable when the randomness from X and Y are 
from the random errors only.

• We found that the orthogonal regression provides the right model for 
the estimation of CO to organic aerosol concentration ratio and its 
temporal trend. Comparison to the results from the orthogonal 
regression model, we found that both the GMR and the OLS yielded
severely downward biased estimates with the OLS being more biased  
than the GMR.
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