High-Q^2 Charged and Neutral Current Cross Sections With Polarised Positron Beam At ZEUS

Trevor Stewart
University of Toronto
On Behalf of the ZEUS Collaboration

DIS 2011, 11-15 April, Newport News, VA USA

Trevor Stewart
University of Toronto
On Behalf of the ZEUS Collaboration
High-Q^2 Charged and Neutral Current Cross Sections With Polarised Positron Beam At ZEUS

1/24
HERA II with Longitudinal Polarised e^{\pm} Beams

- p beam: 920 GeV
- e^{\pm} beam: 27.5 GeV
- centre-of-mass energy: 318 GeV
- Two general purpose experiments, H1 and ZEUS (ZEUS data to be shown).
- $\approx 0.5{ fb}^{-1}$ taken by each experiment.
- HERA II upgrade:
 - Increased luminosity.
 - Longitudinally polarised e^{\pm} beams.
- Mean longitudinal polarisation,
 $$P_e = \frac{N_R - N_L}{N_R + N_L} \approx 30 - 40\%$$
Deep Inelastic Scattering

Variables which characterize DIS:

- Q^2 probing power, negative 4-momentum squared:
 \[Q^2 = -q^2 = -(k - k') \]
- Bjorken x, momentum fraction of proton carried by struck quark:
 \[x = Q^2 / 2p \cdot q \]
- Inelasticity y:
 \[y = p \cdot q / p \cdot k \]
- s is the centre-of-mass energy squared:
 \[s = (p + k)^2 \]
- These are related by:
 \[Q^2 = s x y \]

Neutral Current (NC), γ or Z_0 exchange.

\[e^\pm p \rightarrow e^\pm X \]

Charged Current (CC), W^\pm exchange.

\[e^\pm p \rightarrow \nu X \]

\[p \]

\[P_p \]

\[k \]

\[k' \]

\[q = k - k' \]

\[\gamma/\gamma^0, W^\pm \]

\[\text{current jet} \]

\[P_q = x P_p \]
Charged and Neutral Current events in the ZEUS detector

Charged Current

- ν($\bar{\nu}$) escapes the detector volume.
- Jet energy deposits not balanced by e^\pm deposits.
- Characterised by missing-P_t.

Neutral Current

- Well measured scattered e^\pm.
- e^\pm energy deposits and Jet(s) balanced in ϕ.
Motivation

Why are High Precision High-Q^2 CC and NC measurements important?

- The CC cross sections give a powerful probe of the flavour specific parton distributions (PDFs).
- The NC cross sections are sensitive to all flavours.
- The difference between the $e^+ p$ and $e^- p$ NC cross sections give direct access to the structure function xF_3.
- The longitudinal polarisation asymmetry, $A^+ \approx a_{e\nu q}$ allows parity violation to be directly measured.
Charged Current Cross Section

In the SM the W^\pm interact only with left(right) (anti-)particles.

$$\sigma_{CC}^{e^\pm p} = (1 \pm P_e)\sigma_{CC,P_e=0}^{e^\pm p}$$

$$\frac{d^2\sigma_{CC}^{e^\pm p}}{dx dQ^2} = (1 \pm P_e)\frac{G_F^2}{4\pi x} \left(\frac{M_W^2}{M_W^2 + Q^2}\right)^2 \tilde{\sigma}_{CC}^{e^\pm p}$$

where $\tilde{\sigma}_{CC}^{e^\pm p}$ is the reduced cross section. e^+ and e^- sensitive to different quark densities:

$$\tilde{\sigma}_{CC}^{e^+ p} = x[(\bar{u} + \bar{c}) + (1 - y)^2(d + s)]$$

$$\tilde{\sigma}_{CC}^{e^- p} = x[(u + c) + (1 - y)^2(\bar{d} + \bar{s})]$$
Charged Current Sample (e^+p Data)

- Results published in 2010.
- e^+p data, taken 2006-07,
 - $\mathcal{L} = 132\text{pb}^{-1}$
 - $P_e = +33\%$, $\mathcal{L} = 75.8\text{pb}^{-1}$
 - $P_e = -36\%$, $\mathcal{L} = 56.0\text{pb}^{-1}$
- Data well understood.
Total cross section with $+$ve and $-$ve P_e

The total cross section as a function of the longitudinal polarisation of the lepton beam.

- Results from the $e^+ p$ analysis are shown as filled squares for $+$ve and $-$ve polarisation (circled in red).
- Previous $e^+ p$ and $e^- p$ results from H1 and ZEUS also shown.

- Results not included in SM predictions (HERAPDF1.0).
- Measurements consistent with SM expectations.
dσ/dQ^2 with +ve and -ve P_e

- Overall shift in cross sections due to effect of polarisation.
- Will help constrain PDF fit.
- Good agreement with SM expectation.
$d\sigma/dx$ and $d\sigma/dy$ with $+ve$ and $-ve$ P_e
\[\tilde{\sigma} \text{ with } +\text{ve and } -\text{ve } P_e \]

- Effect of polarisation clearly seen.
- Adding this data will further constrain the PDF fits.
- Good agreement with SM predictions

Trevor Stewart
University of Toronto
On Behalf of the ZEUS Collaboration

High-\(Q^2\) Charged and Neutral Current Cross Sections With Polarised Positron Beam At ZEUS
The e^+p CC reduced cross section constrain the d quark density.

As seen earlier, the reduced cross section, $\tilde{\sigma}$, at LO can be written as a sum of $x(\bar{u} + \bar{c})$ and $(d + s)$ contributions.
Total cross section at multiple polarisation values

- **CC e^+p Cross section becomes 0 for $P_e = -1$ positron beam.**
 - A non-zero cross section might point to the existence of a right-handed W boson, W_R.

- Extrapolation to $P_e = -1$ consistent with 0.

- Limit placed on $\sigma^{CC}(P_e = -1)$ and M_{W_R} GeV consistent with other experiments.

![Graph showing CC cross section results with polarised positron beam at ZEUS](graph.png)

- ZEUS CC e^+p (132 pb$^{-1}$)
- ZEUS CC e^+p (60.9 pb$^{-1}$, $P_e = 0$)

Trevor Stewart
University of Toronto
On Behalf of the ZEUS Collaboration

High-Q^2 Charged and Neutral Current Cross Sections With Polarised Positron Beam At ZEUS
Neutral Current Cross Section

- Mediated by both γ and Z_0

\[
\frac{d^2\sigma_{NC}^{e^+p}}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} \left[Y_+ \tilde{F}_2 \mp Y_- x \tilde{F}_3 - y^2 \tilde{F}_L \right]
\]

\[
\tilde{\sigma}_{NC}^{e^\pm p} = \frac{xQ^4}{2\pi\alpha^2} \frac{1}{Y_+} \frac{d^2\sigma_{NC}^{e^+p}}{dxdQ^2} = \tilde{F}_2 \mp \frac{Y_-}{Y_+} x \tilde{F}_3 - \frac{y^2}{Y_+} \tilde{F}_L
\]

- Where $\tilde{F}_2, x \tilde{F}_3$ and \tilde{F}_L are the generalised structure functions.

- Y_\pm is given by:

\[
Y_\pm = 1 \pm (1 - y)^2
\]
Generalised Structure Functions

- The generalized structure functions are given by:

\[
\tilde{F}_2 = F_2^\gamma + \kappa (-\nu_e \pm P_e a_e) F_2^{\gamma Z} + \kappa^2 (\nu_e^2 + a_e^2 \pm 2P_e \nu_e a_e) F_2^Z \\
x\tilde{F}_3 = \kappa (-a_e \mp P_e \nu_e) xF_3^{\gamma Z} + \kappa^2 (2\nu_e a_e \pm P_e (\nu_e^2 + a_e^2)) xF_3^Z
\]

where \(\kappa = \frac{1}{\sin^2 2\theta_w} \frac{Q^2}{Q^2 + M_Z^2} \)

\[
\{ F_2^\gamma, F_2^{\gamma Z}, F_2^Z \} = \sum_q \{ e_q^2, 2e_q \nu_q, \nu_q^2 + a_q^2 \} x(q + \bar{q})
\]

\[
\{ xF_3^{\gamma Z}, xF_3^Z \} = \sum_q \{ e_q a_q, \nu_q a_q \} 2x(q - \bar{q})
\]

- \(\tilde{F}_2 \) dominates \(\tilde{\sigma}_{e^\pm p} \).
- \(x\tilde{F}_3 \) contributes only at high \(Q^2 \).
- \(\tilde{F}_L \) contributes at high \(y \).
Neutral Current Sample (e^+p Data)

- New result (**ZEUS-prel-11-003**).
 - Missing result of the HERA-II ZEUS high-Q^2 inclusive analyses.

- e^+p data, taken 2006-07,
 - $L = 135 pb^{-1}$
 - $P_e = +32\%$, $L = 78.8 pb^{-1}$
 - $P_e = -36\%$, $L = 56.7 pb^{-1}$

- Kinematic range: $Q^2 > 185 GeV$ and $y < 0.9$.
- Data well described.
$d\sigma/dQ^2$ with $+ve$ and $-ve \, P_e$

- The difference between the two polarisation states clearly seen at higher-Q^2.

\leftarrow RH: $d\sigma/dQ^2$ with $+ve \, P_e$.

\leftarrow LH: $d\sigma/dQ^2$ with $-ve \, P_e$.

\leftarrow RH/LH: ratio of cross sections $+ve \, P_e/-ve \, P_e$.

- These results not included in the shown SM expectation (HERAPDF1.5).
Asymmetry

$$A^+ = \frac{2}{P_+ - P_-} \frac{\sigma^+(P_+) - \sigma^+(P_-)}{\sigma^+(P_+) + \sigma^+(P_-)}$$

- $A^+ \approx a_e \kappa \frac{F_2^{\gamma Z}}{F_2^{\gamma}}$
- $a_e \nu_q$
- A^+ sensitive to ν_q.
- A^+ increase with Q^2.

![Graph showing Asymmetry](image)
$d\sigma/dx$ and $d\sigma/dy$ with $+ve$ and $-ve$ P_e

ZEUS

- **QE > 185 GeV**: ZEUS NC (prel.) $e^+p (78.8pb^{-1})$
 - SM (HERAPDF1.5) $P_e = +0.32$

- **QE > 3000 GeV**: ZEUS NC (prel.) $e^+p (56.7pb^{-1})$
 - SM (HERAPDF1.5) $P_e = +0.32$

Trevor Stewart
University of Toronto
On Behalf of the ZEUS Collaboration

High-Q^2 Charged and Neutral Current Cross Sections With Polarised Positron Beam At ZEUS
These results will help constrain the PDFs.
$\tilde{\sigma}$ with $+ve$ and $-ve$ P_e

- Closed circles $\rightarrow +ve$ P_e.
- Open circles $\rightarrow -ve$ P_e.
- Effect of polarisation visible at high-Q^2.
\tilde{\sigma} \text{ with } P_e = 0

- **Closed circles** → Full $e^+ p$ data set.
- **Open circles** → Previously measured unpolarised $e^- p \tilde{\sigma}$.
- Difference between $e^+ p$ and $e^- p$ clearly seen.
 - This gives us xF_3.

Trevor Stewart
University of Toronto
On Behalf of the ZEUS Collaboration

High-Q^2 Charged and Neutral Current Cross Sections With Polarised Positron Beam At ZEUS
Summary

Charged Current:
- Polarised single and reduced CC $e^+ p$ cross sections have been measured.
- Results already included in HERAPDF1.5.

Neutral Current:
- Both the single differential and reduced NC $e^+ p$ cross sections have been measured for right and left-handed polarisation.
 - Effects of polarisation clearly seen in the $e^+ p$ data.
 - The missing piece from the HERA-II High-Q^2 inclusive data.
 - Data will help better constrain HERAPDF.
Due to the helicity structure of the W boson, it couples only to left(right)-handed (anti-)fermions.

- The angular distribution of $e^+ \bar{q}$ distribution should be flat ($x(\bar{u} + \bar{c})$) in the positron-quark centre-of-mass scattering angle θ^*.

- The $e^+ q$ distribution should exhibit a $(1 + \cos \theta^*)^2$ as $(1 - y)^2 = (1 + \cos \theta^*)^2 / 4$.

- At LO QCD the y-int gives the $(\bar{u} + \bar{c})$ contribution, and the slope the $(d + s)$ contribution.