Measurement of the charge asymmetry in top quark pair production at 7 TeV

Ioana Anghel

University of Illinois at Chicago
(on behalf of the CMS Collaboration)

XXI International Workshop on Deep-Inelastic Scattering and Related Subjects, Newport News 2011
I. **Charge Asymmetry in top pair production in p-p collisions**

II. **Charge Asymmetry Measurement**
 - Event Selection
 - Top Quarks Reconstruction
 - Correction of the Measurement Effects

III. **Systematics**

IV. **Summary**
The charge asymmetry provides the possibility to search for the unknown top quark production mechanisms.

Sources of asymmetry: new particles decaying to $t\bar{t}$ with different vector and axial couplings, interference with SM processes.

- top (anti-top) quarks preferably emitted in quark (anti-quark) direction.

The asymmetry appears only for asymmetric initial states - at LHC, the asymmetric initial states like $q\bar{q}$ are still possible, with the anti-quark coming from the sea quarks, but these events have a much smaller probability.

Proton-antiproton (Tevatron) - quark (anti-quark) are mainly from proton (antiproton).

- the measured forward-backward asymmetry shows 2-3 σ deviation from the SM prediction.

Sources of asymmetry:

1. New particles decaying to $t\bar{t}$ with different vector and axial couplings.
2. Interference with SM processes.

The asymmetry appears only for asymmetric initial states - at LHC, the asymmetric initial states like $q\bar{q}$ are still possible, with the anti-quark coming from the sea quarks, but these events have a much smaller probability.

Proton-antiproton (Tevatron) - quark (anti-quark) are mainly from proton (antiproton).

- the measured forward-backward asymmetry shows 2-3 σ deviation from the SM prediction.
Sensitive Variables to Charge Asymmetry in p-p collisions

Most theoretical predictions use the rapidity to calculate the charge asymmetry:

\[A_C(y_C) := \frac{N_t(|y| < y_C) - N_{\bar{t}}(|y| < y_C)}{N_t(|y| < y_C) + N_{\bar{t}}(|y| < y_C)} \]

In addition, cuts on rapidity and \(m_{t\bar{t}} \) are used.

We used variable \(|\eta_t| - |\eta_{\bar{t}}| \) to determine its asymmetry:

\[A_C = \frac{N^+ - N^-}{N^+ + N^-} \]

where \(N^+ / N^- \) are the number of events with positive/negative values of \(|\eta_t| - |\eta_{\bar{t}}| \)

- we used the pseudo-rapidity because it is based on angular information only, providing a good resolution
- no additional cuts were used, due to limited statistics

\(A_C \) predictions:

- in SM: \(A_C^{SM} = 0.0121 \)
 G. Rodrigo et al., doi:10.1007/JHEP02(2010)051
Event Selection

- Data ~ 36 pb⁻¹
- We selected events in the semi-leptonic channel (muon and electron)

Event selection:
- exactly one primary vertex (PV)
- exactly one isolated muon or electron originating from the PV
- missing transverse energy (neutrino)
- particle flow jets reconstructed using anti-k_T algorithm (4 jets)

Particle flow jets - from identified particles using all detector components
Reconstruction of the Top 4-vector

- The measurement of pseudo-rapidity for the top (anti-top) quarks requires the reconstruction of the 4-vector momentum:

 - not trivial in data: we need to rely on the measured quantities for the final states (lepton, missing transverse energy and jets)

- The reconstruction involves several hypotheses tested in MC - constructed based on associating jets to the 2 top quarks. The hypothesis selection is improved by using the b-tagging

- Ψ variable - constructed for each hypothesis, the hypothesis with the smallest Ψ value is chosen

\[
\Psi = \left[\frac{(M_{rec}^{W,had} - M_{W,had}^{b,p})^2}{\sigma_{W,had}^2} + \frac{(M_{t, had}^{b,p} - M_{t, had}^{b,p})^2}{\sigma_{t,had}^2} + \frac{(M_{t,lep}^{rec} - M_{t,lep}^{b,p})^2}{\sigma_{t,lep}^2} \right] * P_b(q_1) * P_b(q_2) * (1 - P_b(q_1)) * (1 - P_b(q_2))
\]

where $M_i^{b,p}$ and σ_i are determined from the best possible hypothesis on MC, while $P_b(q_i)$ is the probability that a certain jet q is assigned to a b quark and not to one of the light quarks in the best possible hypothesis
Data/MC Comparison for Reconstructed Objects

- **Electron channel**

- **Muon channel**

- QCD is modeled using a data-driven method
- all other templates are taken from MC simulations
- signal and background processes are normalized to the fit result of the cross section measurement
W+jets background asymmetry

- After selection, 50% of the events are top quark pair events, the background being dominated by W+jets
- W+ and W- events show different shape for $|\eta_t| - |\eta_{\bar{t}}|$ in theory (expected)
- Need to understand if there is an asymmetry in W+jets events which is not described by MC
- We apply a slightly different selection to obtain an enriched sample in W+jets:
 - one lepton
 - only 1 or 2 jets in the event
 - a cut threshold for the transverse mass of the reconstructed W (to reduce the QCD background)
- We reconstruct a “pseudo”-top (leptonic branch) and compare the ratio of the η_{t_pseudo} distribution for W+ and W- between data and MC
- The data and MC ratio distributions looks very similar - the differences between W+ and W- events are correctly described by MC
By combining the electron+jets and muon+jets channels: $A_C^{\text{rec}} = 0.018 \pm 0.034\text{(stat)}$

The measured value may be distorted by several effects:

- the amount of background. When subtracted, $A_C^{\text{bkg-subtr}} = 0.035 \pm 0.070\text{(stat)}$
- smearing: reconstructed $|\eta_t| - |\eta_{\bar{t}}|$ does not directly correspond to true value
- lepton efficiency
This correction is done with a regularized unfolding technique:

- from the smearing performed for the MADGRAPH generated $t\bar{t}$ sample, the smearing matrix A between true and reconstructed $|\eta_\ell| - |\eta_{\bar{\ell}}|$ is extracted
- the smearing matrix A also account for efficiency losses
- the matrix A connects the measured spectrum \overrightarrow{y} to the true spectrum \overrightarrow{x}: $\overrightarrow{y} = A \overrightarrow{x}$
- equation is solved for \overrightarrow{x} through a generalized process to invert the matrix A

The unfolded $|\eta_\ell| - |\eta_{\bar{\ell}}|$ spectrum and theory curves agree within errors

$$A_C = 0.060 \pm 0.134 \text{(stat)}$$

- from SM: $A_C^{SM} = 0.0121$
Unfolding Validation

- the method is tested with pseudo-experiments.
- for each experiment, pseudo data is constructed from random distributions of the MC samples (Poisson distribution, involving also the statistical uncertainties from the covariance matrix)

\[\text{pull}(A_C) = \frac{A_C^{true} - A_C^{rec}}{\sigma_{unfolding}} \]

The pull width is ~ 1, meaning that the error propagation is done correctly by the unfolding method.
Systematics Results

- Only systematics influencing the direction of the reconstructed top quark momenta can change the charge asymmetry value.
- Systematics are evaluated by drawing pseudo-experiments from systematically shifted templates

<table>
<thead>
<tr>
<th>source of systematic</th>
<th>positive shift in A_C</th>
<th>negative shift in A_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>jet energy scale</td>
<td>0.017</td>
<td>-</td>
</tr>
<tr>
<td>jet energy resolution</td>
<td>0.007</td>
<td>-0.006</td>
</tr>
<tr>
<td>Q^2 scale</td>
<td>0.003</td>
<td>-0.007</td>
</tr>
<tr>
<td>ISR/FSR</td>
<td>0.005</td>
<td>-0.0006</td>
</tr>
<tr>
<td>matching threshold</td>
<td>0.004</td>
<td>-0.006</td>
</tr>
<tr>
<td>PDF</td>
<td>0.004</td>
<td>-0.011</td>
</tr>
<tr>
<td>b tagging</td>
<td>0.007</td>
<td>-</td>
</tr>
<tr>
<td>lepton efficiency</td>
<td>0.017</td>
<td>-0.018</td>
</tr>
<tr>
<td>QCD model</td>
<td>0.005</td>
<td>-0.005</td>
</tr>
<tr>
<td>overall</td>
<td>±0.026</td>
<td></td>
</tr>
</tbody>
</table>

$A_C = 0.060 \pm 0.134^{+0.028}_{-0.025} \text{(stat)} \pm 0.025 \text{(syst)}$
Summary

- We developed a method to measure the top pair charge asymmetry A_C in proton-proton collisions with the CMS detector in the lepton+jets decay channel.
- For the A_C measurement, the spectrum of $|\eta_t| - |\eta_{\bar{t}}|$ is corrected for selection and reconstruction inefficiencies using an unfolding technique.
- The measured value A_C obtained for 36 pb$^{-1}$ of data is dominated by the statistical uncertainty and is consistent with the Standard Model prediction.

$$A_C = 0.060 \pm 0.134\text{(stat)}^{+0.028}_{-0.025}\text{(syst)}$$

- With a larger data set (> 1 fb$^{-1}$), the measurement of the top quark charge asymmetry can reach the same sensitivity as the Tevatron results.

Reference: CMS Physics Analysis Summary TOP-10-010
Back-up slides
QCD templates

• MC QCD templates:
 - hard to model isolated fake leptons in MC
 - modeled with Pythia 2-to-2 - insufficient statistics is available, especially for high jet multiplicity bins

• QCD templates are obtained from data, using sidebands regions:
 - e+jets - use events passing at least two of the following criteria:
 i) 0.1 < relative isolation < 0.5
 ii) impact parameter (measured wrt beam spot) > 0.02 cm
 iii) fail standard tight electron identification
 - muon+jets - use events satisfying:
 i) 0.2 < relative isolation < 0.5

• Discriminating variables between signal and background: missing transverse energy and M3
Smearing and Selection Effects

- Selection efficiency - not flat. This can affect the charge asymmetry measurement.
- Matrix A - from MADGRAPH generated top pair events. The resolution for $|\eta_t| - |\eta_{\bar{t}}|$ is ~ 0.5.

The result of the unfolding is a full covariance matrix for the measured spectrum. The elements of the covariance matrix are relative bin uncertainties multiplied with the corresponding bin by bin correlation $\sigma_i \sigma_j \ast Cor(i,j)$.
- **linearity check**: construct pseudo data with MC samples with different $|\eta_t| - |\bar{\eta}_t|$ asymmetries.

- the error bars correspond to the mean of the expected statistical uncertainty in each bin

Generated asymmetry is found correctly with the unfolding method.
Top Quark Pair Production at LHC

★ Parameters characterizing a top quark pair event: $q^2, \sigma_{tt\bar{t}}, p, \theta$

$q^2, \sigma_{tt\bar{t}}$ - measured to be within the SM
$m_{tt\bar{t}}^2$ - reconstructed, might show if BSM particles are present
- wide distribution, which hides such resonances

★ At low order, there are no differences between top and anti-top differential distributions. At higher order (α^3), the distributions are not longer equal.