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Abstract. We analyse the role of partonic transverse motion in unpolarized Semi-Inclusive Deep
Inelastic Scattering (SIDIS) processes. Imposing appropriate kinematical conditions, we find some
constraints which fix an upper limit to the range of allowed k⊥ values and lead to interesting results,
particularly for some observables like the 〈cosφh〉 azimuthal modulation of the unpolarized SIDIS
cross section and the average transverse momentum of the final, detected hadron.
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Azimuthal spin asymmetries in SIDIS processes are directly related to Transverse
Momentum Dependent (TMD) parton distribution and fragmentation functions, and are
the subject of intense theoretical and experimental studies. The usual, collinear parton
distribution functions depend on the fraction xB of hadron momentum carried by the
scattering parton and on the virtuality of the probe, Q2. Additionally, TMDs depend on
the intrinsic transverse momentum of the parton, k⊥, opening invaluable opportunities
to unravel the three-dimensional partonic picture of the nucleon in momentum space.

In phenomenological analysis, the transverse momentum distribution of the TMDs is
usually assumed to be a Gaussian. This is a convenient approximation as it allows to
solve the k⊥ integration analytically, and it leads to a successful description of many
sets of data. Inspired by the parton model, we bound the integration range of trans-
verse momenta k⊥ and we observe, in some kinematical regions, remarkable deviations
from the predictions obtained from the common TMD approach, based on the Gaussian
parametrization integrated over the full k⊥ range, [0,∞]. We show that some kinemat-
ical ranges, typically low xB or equivalently low Q2 regions, are not safely controlled
by the present phenomenological model, while a physical upper limit on the k⊥ range
can prevent uncontrolled large k⊥/Q contributions. This leads, for instance, to a bet-
ter description of some observables like the 〈cosφh〉 asymmetry and introduces some
interesting effects in the 〈P2

T 〉 behaviors.
We study the SIDIS process in the γ∗ - proton c.m. frame, where γ∗ denotes the virtual

photon. The detailed kinematics is given in Refs. [1, 2, 3].
A physical picture that allows us to put some further constraints on the partonic

intrinsic motion is provided by the parton model, where kinematical limits on the
transverse momentum size can be obtained by requiring the energy of the parton to be



FIGURE 1. k2
⊥/Q2 phase space as determined by the bounds of Eqs. (1) and (2). The allowed region,

which fulfills both bounds, is represented by the shaded area below the solid line.

less than the energy of the parent hadron and by preventing the parton to move backward
with respect to the parent hadron direction (kz < 0). They give, respectively:

k2
⊥ ≤ (2− xB)(1− xB)Q

2 , 0 < xB < 1 . (1)

and

k2
⊥ ≤ xB(1− xB)

(1−2xB)
2 Q2 , xB < 0.5 . (2)

Notice that these are exact relations, which hold at all orders in (k⊥/Q).
The ratio k2

⊥/Q2, as constrained by Eqs. (1) and (2), is shown in Fig. 1 as a function of
xB : from this plot it is immediately evident that although in principle Eq. (2) (represented
by the dashed line) gives a stringent limit on k2

⊥/Q2 in the region xB < 0.5, it intercepts
the bound of Eq. (1) (solid line) in xB ' 0.3, where the latter becomes most relevant.
Notice also that present data from HERMES and COMPASS experiments span the
region xB ≤ 0.3, where only the momentum bound of Eq. (2) plays a role.

Once the maximum value of k⊥ is limited by Eqs. (1) and (2), we set the appropriate
normalization coefficient

fq/p(x,k⊥) = fq/p(x)
1

1− e−(kmax
⊥ )2/〈k2

⊥〉
e−k2

⊥/〈k
2
⊥〉

π〈k2
⊥〉

, (3)

where (kmax
⊥ )2 denotes the maximum value of k2

⊥ for each given values of xB and Q2 as
required by Eqs. (1), and (2), so that

fq/p(x) =
∫ 2π

0
dϕ

∫ kmax
⊥

0
k⊥ dk⊥ fq/p(x,k⊥) . (4)

The average hadronic transverse momentum 〈P2
T 〉 of the final, detected hadron h is

defined as:

〈P2
T 〉=

∫
d2PT P2

T dσ∫
d2PT dσ

· (5)

Notice that if the integral is performed over the range [0,∞], then 〈P2
T 〉 coincides with

the Gaussian width of the unpolarized PT distribution of the SIDIS cross section: 〈P2
T 〉 ≡

〈P2
T 〉G ≡ 〈p2

⊥〉+z2
h〈k2

⊥〉. The experimental PT range, however, usually span a finite region
between some Pmin

T and Pmax
T ; therefore, in any experimental analysis, one inevitably has



 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 0.01  0.1

〈P
T2 〉

xB

num+cuts
analyt

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  0.2  0.4  0.6

〈P
T2 〉

zh
2

HERMES Proton-π+

num+cuts
analyt

〈p⊥
2〉+zh

2〈k⊥
2〉 

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.001  0.01  0.1

〈P
T2 〉

xB

COMPASS Proton-π+

num+cuts
analyt

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  0.2  0.4  0.6  0.8

〈P
T2 〉

zh
2

COMPASS Proton-π+

num+cuts
analyt

〈p⊥
2〉+zh

2〈k⊥
2〉 

FIGURE 2. 〈P2
T 〉 as a function of xB (left plot) and of z2

h (right plot), for π+ production at HERMES
(right panel) and COMPASS (left panel). The solid (red) line corresponds to 〈P2

T 〉 calculated with a
numerical integration implementing Eqs. (1) and (2), while the dashed (blue) line is 〈P2

T 〉 calculated
with an analytical integration. In both cases we have applied the corresponding experimental cuts. The
dash-dotted (black) line corresponds to the Gaussian 〈P2

T 〉G.

〈P2
T 〉 6= 〈P2

T 〉G, even without considering the cuts in Eqs. (1) and (2). Consequently, the
relation 〈P2

T 〉 ' 〈p2
⊥〉+ z2

h〈k2
⊥〉 holds only approximatively.

Figure 2 shows the average hadronic transverse momentum 〈P2
T 〉 as a function of

xB and of z2
h for π+ production at HERMES and COMPASS, respectively. The solid

(red) lines correspond to 〈P2
T 〉 obtained with a numerical k⊥ integrations implementing

Eqs. (1) and (2). Instead, the dashed (blue) lines correspond to 〈P2
T 〉 computed with an

analytical integration. In both cases we have taken into account the appropriate exper-
imental PT cuts. Clearly, at low xB , there is a substantial deviation from the analytical
calculation, which also affects the value of 〈P2

T 〉 as a function of z2
h. As far as the zh

dependence is concerned, first of all, one can see that there is a large deviation from the
naive formula 〈P2

T 〉= 〈p2
⊥〉+ zh〈k2

⊥〉, corresponding to the dash-dotted (black) lines, for
both calculations. Secondly, although the z2

h-dependence is not linear any more, it seems
to be approaching an almost constant behavior

The 〈cosφh〉 modulation receives two contributions, both suppressed by one power
of (k⊥/Q).The Cahn term, which is proportional to the convolution of the unpolarized
distribution and fragmentation functions, was extensively studied in Ref. [4]. There,
EMC measurements [5] on the cosφh modulation and of the PT distribution on the
unpolarized SIDIS cross section were used to determine the Gaussian width of the
k⊥ distribution of the unpolarized distribution function fq/p(x,k⊥). The second term is
proportional to the convolution of the Boer-Mulders distribution function and the Collins
fragmentation function and was neglected in Ref. [4].

Figures 3 and 4 show how a large deviation from the analytical integration results is
obtained by applying the k⊥ bounds of Eqs. (1) and (2) when computing the Cahn effect
contribution to 〈cosφh〉 corresponding to the HERMES and COMPASS kinematics. In
these figures our results, obtained with and without k⊥ - cuts, are compared to the latest
HERMES [6] and COMPASS [7] data. Although still showing a considerable deviation
from the experimental data, our calculation confirms that physical partonic cuts have a
quite dramatic effect in the small x region, and should therefore be taken into account in
any further analysis of these experimental data.

To evaluate the influence of the partonic cuts on the contribution to 〈cosφh〉 originat-
ing from the Boer-Mulders⊗Collins term, we use the parametrization of Ref. [8] for the
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FIGURE 3. Cahn contribution to 〈cosφh〉 for π+ production at HERMES, as a function of xB (left plot),
zh (central plot) and PT (right plot). The solid (red) line corresponds to 〈cosφh〉 calculated with a numerical
k⊥ integration over the range [0,kmax

⊥ ]. The dashed (blue) line is 〈cosφh〉 obtained by integrating over k⊥
analytically. The full circles are preliminary experimental data from Ref. [6].
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FIGURE 4. Same as Fig. 3, for the COMPASS kinematics. The full circles are preliminary experimental
data from Ref. [7].

Collins function while for the Boer-Mulders function we apply the extraction of Ref [9].
The Boer-Mulders contribution is very tiny and is not strongly affected by kinematical
cuts of Eqs. (1) and (2).

The residual discrepancy between the model prediction and the measurements of
the 〈cosφh〉 azimuthal moment could indicate that higher twist contributions, from
pure twist-3 functions, for example, might be non negligible in this modulation. More
elaborated phenomenological studies including twist-3 TMDs would be necessary to
confirm these observation.
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