Measurement of the photoproduction of b-quarks at threshold at HERA

Michel Sauter
Ruprecht-Karls-Universität Heidelberg
for the H1 Collaboration

XIX International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2011)
April 11-15, 2011
Newport News, USA
Measurement of the photoproduction of b-quarks with a special focus on small b-quark momenta.

“The transverse momentum of bottom quark at HERA can be predicted by perturbative QCD quite accurately. … The comparison of this prediction with the data would be extremely useful … “.

“The differential spectra indicate that the data tend to lie above the predictions more significantly towards small b-quark momenta… “.
The HERA ep collider (1992 - 2007)

- ep collider:
- e^\pm energy: 27.6 GeV
- p energy: 920 GeV
- Center of mass energy: 319 GeV
- 2 collider experiments: H1 and ZEUS
- Integrated luminosity: $\sim0.5\text{ fb}^{-1}$ (per experiment)
Motivation to measure heavy flavor production

- Beauty quarks in ep interactions at HERA are mainly produced in Photon-Gluon-Fusion.

- Hard scales for perturbative QCD:
 - \(m_b, p_T, Q^2 \)
 - multi-scale problem.

- pQCD approximations:
 - Massive scheme:
 - b quarks treated massive.
 - Valid for small scales \(\mu^2 \approx m_b^2 \)
 - Massless scheme:
 - b quarks treated as massless partons in the proton and photon.
 - Valid for large scales \(\mu^2 \gg m_b^2 \)

Two kinematic regimes:

- Photoproduction: \(Q^2 \approx 0 \text{ GeV}^2 \)
- Deep Inelastic Scattering: \(Q^2 > 1 \text{ GeV}^2 \)
 (scattered electron detected)
Concept of this analysis

- What happens if the only experimental hard scale is m_b?

- Experimental implications:
 - Measure in photoproduction: $Q^2 \approx 0 \text{ GeV}^2$
 - Avoid jets (no p_T^{jet}-cut off) and enrich beauty with two low p_T-leptons from semileptonic decays: $p_T \approx 0 \text{ GeV}$
 - Low p_T-leptons: use electrons and not muons (electrons have lower experimental p_T thresholds).

- Chosen beauty-tag:
 - 2 electrons from semileptonic decays:
 $$b \bar{b} \rightarrow e e X$$
Online electron identification

Calorimeter Trigger (JT)
16 highest **energy depositions** in calorimeter (within 2.3 µs)

Fast Track Trigger (FTT)
Fits up to 48 **tracks** (within 20 µs)

Electron Trigger: Combine information from FTT and JT (within 100 µs):
- Topological match: cut on $\Delta \phi$, $\Delta \theta$.
- Cut on $E_{T,\text{JT}}/p_{T,\text{FTT}}$ (enrich electrons).

Online measured $E_{T,\text{JT}}/p_{T,\text{FTT}}$

Measured data set: 47.6 pb$^{-1}$

2) doi:10.3929/ethz-a-005977487.
Offline electron identification

Requirements:
- High efficiency.
- Good background rejection (pions).
- Low p_T threshold.

Implementation:
- Neural Network (NN) based on 5 variables using input from the calorimeter (shower profile) and tracker information. The NN discriminate electrons from background (pions).
- Normalized dEdx-likelihood:
 \[Lkh_{dEdx} = \frac{P_{dEdx}(e)}{P_{dEdx}(e) + P_{dEdx}(\pi)} \]
- Combination of NN with normalized dEdx-likelihood to a common electron pion discriminator D.

Excellent separation between electrons (signal) and pions (background).
Overview on the data analysis

Di-electron Selection:
- Trigger selection.
- Selection of 2 electron candidates with
 - $1 \text{ GeV} < p_T(e) < 5 \text{ GeV}$, $20 < \theta < 140$

- Rejection of background.
 - Rejection of non-ep background.
 - Loose isolation-criterion (better electron discriminator performance).

- Rejection of real electrons from
 - DIS events (including beam electrons).
 - γ-conversion.

Unfolding Procedure:
- Deconvolution of the $p_T(b)$ cross section.
- Determination of remaining background: J/ψ, charm, electron misidentification.
Measurement of $<p_T(b)>$ via the thrust axis-method

Definition of mean transverse beauty mass:
$$<m_T(b)> = \sqrt{m_b^2 + <p_T(b)>^2}$$

- Measurement of $<m_T(b)>$ allows measurement of $<p_T(b)>$.

Estimator for mean transverse beauty mass:

1) Determine thrust axis in transverse plane:

2) Divide event in upper part, lower part (defined by thrust axis) and proton remnant ($\vartheta < 15$).

3) Determine estimator for mean transverse beauty mass $m_{T,est}$, based on the vectorial sum of the energy flow in the upper and the lower part.

Measurement of $<m_T(b)>$ at threshold.

$p_T(b)=0 \rightarrow <m_T(b)> = m_b$
Unfolding of the differential cross section

Purpose:
- Deconvolution of the $p_T(b)$ cross section from the detector response.
- Determination of remaining the **background**.

Method:
- Relate measured quantities with the mean transverse b-quark momentum $<p_T(b)>$:

\[y = Ax + b \quad (1) \]

- Solve equation (1) with **regularized unfolding**:
 - Determine an estimator for x by minimizing a standard χ^2-function with additional side conditions on the smoothness and the normalization.
 - The regularization parameter is chosen to minimize the correlations among the bins of x.
 - Bins of x are further combined, such that the resulting signal bins have almost **no** correlations.

For literature on unfolding: http://www.desy.de/~blobel/unfold.html
and the book of G. Cowan
Structure of the response matrix

\[y = Ax + b \]

- \(y \): reconstructed vector
- \(A \): number of bins
- \(x \): true vector
- \(b \): remaining DIS background. Normalization estimated from MC and subtracted from \(y \).

Substructure of single bin
Used to separate beauty from charm, \(J/\Psi \) and \(\gamma p \)-background.
\[m_{ee \ sgn} := m_{ee} * q(e1) * q(e2) \]
Control distribution: substructure in y

side bins sensitive to γp-background

$m_{ee} q(e1) q(e2)$: discrimination of beauty against charm and J/ψ.
Fractions of beauty, charm, J/ψ, γp backgr. determined by the unfolding procedure.
Control distribution: p_T track distributions

Good description in all control distributions.
Differential cross section

H1 Preliminary

\[\text{ep} \rightarrow b\bar{b} X \]

- Access to lowest \(p_T(b) \) values ever measured in ep.
- Agreement between data and NLO calculation (FMNR).
Comparison to other measurements

- Many measurements confirming each other over a wide $p_T(b)$ range.
- This analysis extends the measured differential cross section to lowest $p_T(b)$ values.
- General good agreement between the data and the NLO calculation (FMNR).
Summary

- Measurement of beauty photoproduction using di-electron events.
- Measurement is consistent with other measurements.
- Good agreement between data and NLO.
- Measurement of beauty photoproduction at the $p_T(b)$-production threshold.
Differential cross section

- The indicated bin centers of the data points are corrected in $\langle p_T(b) \rangle$, according to the expected distribution. Correction done, such that:

$$\int_{\delta p_T} d\sigma_{\text{FMNR}} / dp_T = \frac{d\sigma_{\text{FMNR}}}{dp_T}(p_{T, b.c.}) \cdot \delta p_T$$

- The errors in $p_T(b)$ indicate the bin width δp_T.
- The ratios is based on the full bin width δp_T:

$$R = \frac{\delta \sigma_{\text{measured}} / \delta p_T}{\delta p_T / \int_{\delta p_T} d\sigma_{\text{FMNR}} / dp_T}$$

- Access to lowest $p_T(b)$ values ever measured in ep.
- Agreement between data and NLO calculation (FMNR).