(Multi-) Jet Production and Determination of the Strong Coupling Constant

Markus Wobisch
Louisiana Tech University

XIX International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2011)
April 12, 2011
Newport News, VA
\(\alpha_s \) and the RGE

- \(\alpha_s(\mu_R) \): depends on renormalization scale \(\rightarrow \) predicted by “RGE”
- Values \(\alpha_s(\mu_R) \) are not predicted
- if we know value at one scale, \(\alpha_s(\mu_0) \), we know the value at any scale \(\alpha_s(\mu_R) \)
- Agreement: compare \(\alpha_s(M_Z) \)

QCD test:
- Determine \(\alpha_s(M_Z) \) \(\rightarrow \) check process independence
- Test predicted running \(\alpha_s(\mu_R) \)

\[
Q^2 \frac{\partial \alpha_s(Q^2)}{\partial Q^2} = \beta \left(\alpha_s(Q^2) \right)
\]

\[
\beta(\alpha_s(Q^2)) = -\beta_0 \alpha_s^2(Q^2) - \beta_1 \alpha_s^3(Q^2) - \beta_2 \alpha_s^4(Q^2) - \beta_3 \alpha_s^5(Q^2) + O(\alpha_s^6)
\]
Knowledge of α_s

Renormalization Group Equation has been tested for momenta up to 209 GeV

(LEP e^+e^- data)

\rightarrow But not yet for larger scales
Fermilab Tevatron and DoE

Most precise jet energy calibration at a hadron collider!
Inclusive Jet Cross Section

Very precise: benefit from hard work on jet energy calibration

\[\sigma_{\text{theory}}(\alpha_s(M_Z)) = \sigma_{\text{pert}}(\alpha_s(M_Z)) \cdot c_{\text{non-pert}} \]
Basic principle

Perturbative cross section formula:

\[\sigma_{\text{pert}}(\alpha_s) = \left(\sum_n \alpha_s^n c_n \right) \otimes f_1(\alpha_s) \otimes f_2(\alpha_s) \]

- pQCD matrix elements: explicit \(\alpha_s \) dependence
- \(f_1, f_2 \) (PDFs): implicit \(\alpha_s \) dependence

Determine \(\alpha_s \) from data:
- Vary \(\alpha_s \) until sigma-theory agrees with sigma-experiment
 \(\rightarrow \) chi2 minimization

\(\rightarrow \) Procedure requires PDFs as external input
Currently:
Main constraints on high-x gluon density come from Tevatron jet data

Goal:
Minimize correlations between data and PDF uncertainties

→ Restrict α_s analysis to kinematic regions where impact of Tevatron data for PDFs is small.

→ Tevatron jet data don’t affect gluon for $x < 0.2 - 0.3$
Jet cross section has access to x-values of: (in LO kinematics)

\[x_a = x_T \frac{e^{y_1} + e^{y_2}}{2}, \quad x_b = x_T \frac{e^{-y_1} + e^{-y_2}}{2} \quad \text{with} \quad x_T = \frac{2p_T}{\sqrt{s}} \]

What is the x-value for a given incl. jet data point \(@(p_T, |y|) \)?

→ Not completely constrained – unknown kinematics since we integrate over other jet(s)

→ Construct “test-variable” (treat as if other jet was at \(y=0 \)):

\[x = x_T \cdot (e^{|y|} + 1)/2 \]

→ Apply cut on this test-variable to restrict accessible x-range

→ Find: requirement \(x \)-test < 0.15
removes most of the contributions with \(x > 0.2 - 0.3 \)

→ 22 (of 110) data points remaining at \(50 < p_T < 145 \) GeV
x_{\text{min}} / x_{\text{max}} \text{ distributions}

Every analysis bin \rightarrow one plot
Each plot: x-min/x-max distributions

Cut on test-variable x-test < 0.15
\rightarrow 22 (of 110) data points remain

These have small contributions from $x > 0.2 - 0.3$

\leftarrow Only data points above green line are used
22(out of 110) inclusive jet cross section data points at $50 < p_T < 145$ GeV

→ Input in α_s analysis
→ Use best theory prediction: NLO + 2-loop threshold corrections (Kidonakis/Owens) with MSTW2008NNLO PDFs

\[
\alpha_s\left(M_Z\right) = 0.1161^{+0.0041}_{-0.0048}
\]

→ Most precise result from a hadron collider

→ Consistent with HERA results and world average

| All uncertainties are multiplied by a factor of 10^3 |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| \(\alpha_s(M_Z) = 0.1161^{+0.0041}_{-0.0048}\) (DØ combined fit) |

<table>
<thead>
<tr>
<th>(p_T) (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total uncertainty</th>
<th>Experimental uncorrelated</th>
<th>Experimental correlated</th>
<th>Nonperturb. correction</th>
<th>PDF uncertainty</th>
<th>(\mu_{r,f}) variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1161 +4.1 -4.8</td>
<td>±0.1</td>
<td>+3.4 -3.3</td>
<td>+1.0 -1.6</td>
<td>+1.1 -1.2</td>
<td>+2.5 -2.9</td>
</tr>
</tbody>
</table>
Main result: use best theory predictions
NLO + 2-loop threshold corrections
(Kidonakis/Owens)
with MSTW2008NNLO PDFs
\[\alpha_s \left(M_Z \right) = 0.1161^{+0.0041}_{-0.0048} \]

Use only NLO
with MSTW2008NLO PDFs
\[0.1202^{+0.0072}_{-0.0059} \]

- Larger value of “NLO-only” result:
 → due to missing \(O(\alpha_s^4) \) contributions
- Larger uncertainty of “NLO-only” result:
 → due to increased scale dependence (main effect)
 → and increased PDF uncertainty (minor effect)

All uncertainties are multiplied by a factor of \(10^3 \)

<table>
<thead>
<tr>
<th>Total uncertainty</th>
<th>Experimental uncorrelated</th>
<th>Experimental correlated</th>
<th>Nonperturb. correction</th>
<th>PDF uncertainty</th>
<th>(\mu_{r,f}) variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1161</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±1.0</td>
<td>±1.1</td>
<td>±2.5</td>
</tr>
<tr>
<td></td>
<td>+4.1</td>
<td>+3.4</td>
<td>+1.0</td>
<td>+1.1</td>
<td>+2.5</td>
</tr>
<tr>
<td></td>
<td>−4.8</td>
<td>−3.3</td>
<td>−1.6</td>
<td>−1.2</td>
<td>−2.9</td>
</tr>
</tbody>
</table>

\(\alpha_s \) extraction at large \(p_T \) requires high (experimental & theory) precision
Running of α_s (?)

- so far tested up to $\mu_r = 209$ GeV (LEP)

Could be modified for scales $\mu_r > \mu_0$
e.g. by extra dimensions

here: $\mu_0 = 200$ GeV and $n=1,2,3$ extra dim.
(n=0 \rightarrow Standard Model)

But: α_s extraction from inclusive jets uses PDFs which were derived assuming the RGE
\rightarrow We cannot use the inclusive jets to test the RGE in yet untested region
... towards testing in the RGE in novel energy regimes

→ Cannot rely on PDF information
 (PDF parametrizations already assume RGE in DGLAP evolution)
Cancelling PDFs: Ratios

Goal: test pQCD (and α_s) independent of PDFs

Conditional probability:

$$R_{3/2} = P(3\text{rd jet} | 2 \text{ jets}) = \frac{\sigma_{3\text{-jet}}}{\sigma_{2\text{-jet}}}$$

- Probability to find a third jet in an inclusive dijet event
- Sensitive to α_s (3-jets: α_s^3 / 2-jets: α_s^2)
- (almost) independent of PDFs
\[R_{3/2} = \frac{\sigma_{3\text{-jet}}}{\sigma_{2\text{-jet}}} \]

Measure as a function of two momentum scales:

- \(p_{T\text{max}} \): common scale for both \(\sigma_{2\text{-jet}} \) and \(\sigma_{3\text{-jet}} \)
- \(p_{T\text{min}} \): scale at which 3\text{rd} jet is resolved (\(\sigma_{3\text{-jet}} \) only)

Sensitive to \(\alpha_s \) at the scale \(p_{T\text{max}} \) → probe running of \(\alpha_s(p_{T\text{max}}) \)

Details:

- inclusive \(n \)-jet samples (\(n=3,2 \)) with \(n \) (or more) jets above \(p_{T\text{min}} \)
- \(|y| < 2.4\) for all \(n \) leading \(p_T \) jets
- \(\Delta R_{\text{jet,jet}} > 1.4 \) (insensitive to overlapping jet cones)
- study \(p_{T\text{max}} \) dependence for different \(p_{T\text{min}} \) of 50, 70, 90 GeV
 → Measurement of \(R_{3/2}(p_{T\text{max}}; p_{T\text{min}}) \)
Using $R_{3/2}$ to test NLO matrix elements

For a given $\alpha_s(M_Z) = 0.118$:

\rightarrow NLO results for MSTW2008NLO, NNPDF v2.1, ABKM09NLO agree

\rightarrow CT10 slightly higher at high p_T
\(\alpha_s \) from inclusive jet cross section:
- detailed analysis to avoid inconsistencies (or circular arguments) related to
 - correlations between experimental and PDF uncertainties
 - assumptions of RGE in DGLAP evolution of PDFs
→ most precise result from a hadron collider → see consistency

\(\alpha_s \) determinations from cross section (assuming PDFs) can not be used to test running in novel energy regimes
→ Need observables which are insensitive to PDFs

\(R_{3/2} \) precision data:
- well described by NLO pQCD
→ basis to extend knowledge of \(\alpha_s \) to novel energy regime
SHERPA (out of the box) describes data
PYTHIA tune DW (tuned to D0 dijet azimuthal decorrelations) fails
→ “softer” tune BW describes the data
CDF Run I result

Claim:
“Test running over $40 < ET < 440$ GeV”

→ Not really!!
because analysis uses PDFs for which DGLAP evolution is already done under assumption of running according to RGE

→ RGE was already assumed

→ No independent test

→ Avoided in the D0 analyses