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Abstract. A large set ofitt electroproduction cross sections from proton, deuterinthauminum
targets have been measured in Hall C. The data cover the Gedgex < 0.6, 2< Q? < 4 (GeVk)?,
and 03 < z < 1, with transverse momeng < 0.45 GeVE, and span the low energy residual-mass
region. The cross section data have been used to constraciedyvof ratios, in terms of favored
to unfavored fragmentation functions, charged pion ragiod deuteron-hydrogen. Thez andP?

dependencies of the cross sections and their ratiof\(for 4 Ge\? andz < 0.7) show the features
of factorization in a sequential electron-quark scatgeand quark-pion fragmentation process. We
find the azimuthal angular dependencies to be small. We fmohthinsic transverse momenta of the
u quark to be slightly larger than far quark, while the transverse momentum width of the favored
and unfavored fragmentation functions is about the santeaemlarger than the quark widths.
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INTRODUCTION

In this report, we will concentrate on the low-energy domafisemi-inclusive electron
scattering. Our focus will be on the process where a quadafents into a pion, which
carries away a large fraction of the exchanged virtual phistenergy.

In the eN — err*X reaction, an electron with four-momentu@E,R) scatters from

a nucleon with masM, resulting in a scattered electron with four-moment(&, k'),
exchanging a virtual photon with four-momentuaps- (v, g) with a quark. A meson with
four momentun(E, P), and transverse momentufis produced. We define the four-
momentum transfer squared @ = —g? and Bjorkenx asx = Q?/2Mv. The fraction
of the virtual photon energy taken away by the meson-sEy/v. If we neglect the
pion mass, and if the meson is collinear with thandQ?/v? < 1, we can present the
square of mass of the undetected residual systam as M2+ Q2(1—z)(1 — 1). Note,

in the inclusive case, the square of the invariant mag#?is- M2 + Qz()—l( -1).

At high energies the cross section factorizes into the pbdtithe virtual photon—
guark interaction and the subsequent quark hadronizal@monsequence of factoriza-
tion is that the fragmentation function is independenk,cand the parton distribution
function independent & At low energies, it is not obvious that the factorizatioridso



The quark-hadron duality has been predicted [1], and verjf¢for high-energy me-
son electroproduction. While the phenomenon of duality @lusive electron scattering
is well-established, duality in the semi-inclusive meslacgoproduction was not tested
before this experiment. To investigate the existence ofighadron duality and its rela-
tion to low-energy factorization in semi-inclusive® electroproduction was one of the
goals of the E00-108 experiment.

EXPERIMENT

The experiment E00-108 [3] ran in 2003 in Hall C at JLab. Ieaelectrons, with en-
ergy of 5.479 GeV and currents 2060 uA, were scattered from 4-cm-long liquid hy-
drogen or deuterium targets and detected in the SOS spestearihe electroproduced
pions were detected in the HMS spectrometer. The experipwrdisted of three parts:
i) at a fixed electron kinematics af,Q?) = (0.32, 2.30 (GeW)?), zwas varied from 0.3

to 1 by changing the HMS momentum from 1.3 to 4.1 GeWith nearly uniform cov-
erage in the pion azimuthal angle, around thej direction, but at §R) ~0.05 GeV¢
(z-scan); ii) forz= 0.55,x was varied from 0.2 to 0.6, with a corresponding variation in
Q? from 1.5 to 4.6 (GeW)?, by changing the SOS angle, keeping the pion centered on
thed direction §-scan); iii) for (x, Q%) = (0.32, 2.30 (GeW)>?), z~0.55,R was scanned
from 0 to 0.4 GeV¢ by increasing the HMS angle (wittp) ~ 18C°) (R-scan).

EXPERIMENTAL RESULTS

Many of the results are described in detail in [2, 4, 5]. Weesbed for the first
time the quark-hadron duality phenomenon and the onset\eeloergy factorization in
semi-inclusive pion electroproduction. We compared thasneed-?H(e,é)X cross
sections as a function & (at x = 0.32) with the parton model calculation assuming
CTEQS5M parton distribution functions [6] and the paramettiZragmentation func-
tions of Binnewies, Kniehl and Kramer [7]. We found good a&gnent between data
and model forz < 0.65. We constructed several ratios of cross sections ofbprand
deuteron targets, and found the ratio of fragmentationtfans D~ /D™ to closely re-
semble that of high-energy reactions. We studied the credsosis as a function of the
P? in the context of a simple model, allowing separate widtlmsifo(uy) and down ig)
quarks, and for favored; ) and unfavoredy{_) fragmentation functions, and assuming
Gaussian distributions. We fit ti@-dependence of the™ cross sections for hydrogen
and deuterium for the four widths, and tBe /D" andd/u ratios. We find the ratio
d/u=0.39+0.03, andD~ /D" = 0.43+0.01, in good agreement with the high energy
data, and the width squared foquarksu2 = 0.07-+0.03 (GeVt)?. But for thed-quark
width squared the fit gives value consistent with zeug £ —0.01+ 0.05 (GeVk)?),
and nearly similar values for the fragmentation Widthﬁ & 0.18+0.02 (GeVk)? and
u2 =0.14+0.02 (GeVE)?).

At z=0.55, we have studied the andQ?- dependencies of the’H (e € 1t7)X cross
sections. We found good agreement between the data and,rasdélown in Fig. 1 (left
panel) for thex-dependence of thet cross sections &2, = 3.8 (GeVt)2. To study the
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FIGURE 1. ThelH(e,émt)X cross section. Left: As a function afatz= 0.55, @ = 3.80 (GeVt)2.
Right: As a function ofQ? atx = 0.40,z = 0.55. The curves are the quark-parton model calculations.
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Q?-dependence of the cross sections, we bin centergddra commorx = 0.40. The
'H(e €)X cross section versu®? is shown in the right panel of Fig. 1. The parton
model calculations describe our data remarkably well.

In Fig. 2 therr™ /i ratios are shown as functions ofatx = 0.32),x andQ? (atz=
0.55). The solid and open triangles are Cornell data [8ka€P) = (0.24, 2.0 (Ge\W)?)
and (0.50, 4.0 (Ge\gJ?), respectively. Stars represent HERMES data [9] at average
values of(Q%)=2.5 (GeVt)?, (W?)=28.6 GeVf, (v)=16.1 GeV andx)=0.082. The solid
line is the quark-parton model calculation. T/ ratio from the proton is larger
than those reported by HERMES, but agrees well with the Cbdagéh, and is consistent
to the rise inz as expected from the quark-parton model calculation up~00.6. For
0.65< z<0.85, the ratio decreases becauserthé\*+ cross section is larger than the
" A° one. The sharp rise of the ratio at> 0.85 is due to exclusiver™ production.
Similarly the deuteron also reproduces the expected rm@a the quark-parton model
calculation. Atz > 0.7 we see again effects rising from tNe- A transition.

In the central panel of Fig. 2 we show the /7 ratio versusx for proton (top) and
deuterium (bottom) targets. Solid and open triangles wpredata from Cornell [8] at
(x, @) =(0.24, 2.0 (GeW)?), and (0.50, 4.0 (Ge\&J?). Our rr* /11~ ratios is in good
agreement with the Cornell data and with the quark-partonahpictdiction.

The rrt /mr ratio versusQ? (at z = 0.55) shown in right panel of Fig. 2, agrees well
with the quark-parton model expectations.

If factorization, isospin symmetry and charge conjugatiofds, thert™ cross sections
on the proton and deuteron can be used to extract{lie, ratio of valence quarks
(uy = u—u, andd, = d —d). This ratio is shown in Fig. 3, as a functionxfat z=0.55),

z (atx = 0.32) andP? (atx = 0.32 andz = 0.55). Our data are in good agreement with
WA21/25 [10] and EMC [11] results, but below the HERMES dat2][ The ratiod, /uy

may contaire-dependent factors, if the symmetry breaks down. One caresstin Fig. 3
(central panel) a sharp increase of théuy ratio atz> 0.7 where the\ transition comes
into play. There is no appareRt -dependence of the ratios as can be seen in the right
panel, although future higher-precision data are requeadle out any dependence.

We believe our work will provide a fruitful basis for futuréuslies of the quark-parton
model and more sophisticated model calculations at religtiow energies.
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FIGURE 2. The ratiorr™ /mr for proton (top) and deuteron (bottom) targets. Left:/ 71~ as a function
of z, atx = 0.32. Solid and open triangles are Cornell data [8], and star$iERMES data [9]. Center:
Ratiorr™ /m as a function ok atz= 0.55. Solid and open triangles are Cornell data [8]. Right: fEti®
mt /i as a function of? for x = 0.4 andz = 0.55. The lines are the quark-parton model expectations.
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FIGURE 3. Left: The ratio of valence quarldy/uy as a function ok atz=0.55. Solid and open squares
represent data from WA-21/25 [10] and EMC [11]. Solid trilmgymbols are HERMES data [12]. Center:
Thed,/uy as a function oz atx=0.32. Right: The ratial,/uy as a function OF}Z atx=0.32 andz=0.55. The
band is a quark-parton model expectation using CTEQ paiidnhaition function parameterizations [6].
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