Jet Results from CMS

Cosmin Dragoiu

University of Illinois at Chicago
(for the CMS Collaboration)

XIX International Workshop on Deep-Inelastic Scattering and Related Subjects, Newport News 2011
The CMS detector
Jet reconstruction
 - Jet energy calibration
 - Jet energy resolution
Inclusive jet cross section
Dijet mass cross section
Dijet azimuthal decorrelations
Dijet angular distributions

More about jet performance and multijet measurements at CMS in Joanna’s talk!
CMS Detector

Tracking System ($|\eta| < 2.5$)
- 10 layers (barrel): TIB (4L) + TOB (6L)
- 11 disks (endcap): TID (3D) + TEC (9D)

Pixel ($|\eta| < 2.5$)
- 3 layers (barrel)
- 2 disks (endcap)

Muon System ($|\eta| < 2.4$)
- 4 muon stations
- DT + RPC (barrel)
- CSC + RPC (endcap)

Electromagnetic Calorimeter
- EB ($|\eta| < 1.48$) + EE ($1.48 < |\eta| < 3.0$)
- Preshower ($1.65 < |\eta| < 2.6$)

Hadronic Calorimeter
- HB + HO ($|\eta| < 1.3$)
- HE ($1.3 < |\eta| < 3.0$)
- HF ($3.0 < |\eta| < 5.2$)

CASTOR ($5.2 < |\eta| < 6.6$)

ZDC ($|\eta| > 8.3$)

Return Yoke

4T Magnet
CMS 2010 DATA

- Delivered by LHC: 47/pb
- Recorded by CMS: 43/pb
- Data taking efficiency > 90%
 - with all subdetectors running > 85%
- Luminosity uncertainty: 4%
Jet Reconstruction

- Jet reconstruction algorithms available at CMS:
 - k_T, Anti-k_T
 - CMS default: Anti-k_T $R = 0.5$ & 0.7

Calorimeter Jets
- from calorimeter towers

Track Jets
- from tracks

Jet plus Track
- from calorimeter towers corrected using tracker information

Particle Flow Jets
- from identified particles using all detector components
Jet Energy Calibration

- Reconstructed Jet
 - Offset Correction
 - Removes pile-up and noise contributions
 - MC Correction (η & p_T)
 - Flattens the jet response in η and corrects the jet p_T to particle level
 - Residual Correction (η & p_T)
 - Accounts for the differences between data and MC (dijet p_T balance, MPF method)

Calibrated Jet

- CMS-PAS-JME-10-010

Graphs showing data/MC comparisons and jet energy response plots.

- MC scaled for FSR and QCD bkg
- $\chi^2 / NDF = 14.2 / 12$
- CMS preliminary, 2.9 pb^{-1}
- $\sqrt{s} = 7 \text{ TeV}$

Absolute scale uncertainty [%]
- Total uncert.
- Total MPF
- Photon scale
- Extrapolation
- Offset (+1PU)
- Residuals

Data/MC
- CMS preliminary, 2.9 pb^{-1}
- $\sqrt{s} = 7 \text{ TeV}$
- $\chi^2 / NDF = 14.2 / 12$

Graph showing absolute scale uncertainty and data/MC comparison.
Jet Energy Resolution

CMS-PAS-JME-10-014

- Determined using the dijet asymmetry method (dijet p_T balancing)
- The asymmetry is: $A = \frac{p_T^{jet1} - p_T^{jet2}}{p_T^{jet1} + p_T^{jet2}}$
 Where $jet1$, $jet2$ - leading jets in the event (3rd jet $p_T \rightarrow 0$)
- The jet p_T resolution is related to the width of the asymmetry distribution
 $$\frac{\sigma(p_T)}{p_T} = \sqrt{2}\sigma_A$$

Calorimeter Jets

<table>
<thead>
<tr>
<th>p_T [GeV]</th>
<th>jet p_T resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.3</td>
</tr>
<tr>
<td>100</td>
<td>0.2</td>
</tr>
<tr>
<td>200</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Particle Flow Jets

<table>
<thead>
<tr>
<th>p_T [GeV]</th>
<th>jet p_T resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.3</td>
</tr>
<tr>
<td>100</td>
<td>0.2</td>
</tr>
<tr>
<td>200</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Better resolution!
Represents an important test of the Standard Model

Extends up to p_T of 1.1 TeV and as low as p_T of 18 GeV when using particle flow jets

- NLO pQCD using NLOJET++
- Non-perturbative corrections (< 30%) from PYTHIA6 and HERWIG++

The data is corrected to particle level using an ansatz method
Inclusive Jet Production II

- Main experimental uncertainties:
 - Jet energy scale (3% to 5%)
 - Jet energy resolution (10% to 30%)
- Main theoretical uncertainties:
 - Scale (μ_r, μ_f) (5% to 10%)
 - PDF using PDF4LHC recipe (10%)

The data is compatible with NLO predictions!
Another important test of the Standard Model

The dijet invariant mass probes the proton momentum fractions of the scattering partons:

$$M_{JJ}^2 = x_1 \cdot x_2 \cdot s$$

The data is corrected to particle level

- Unfolding factors (0.95 to 0.98)

- NLO pQCD using NLOJET++

- Non-perturbative corrections (5% to 30%) from PYTHIA6 and HERWIG++

Using particle flow jets!

$$8 \cdot 10^{-4} \leq x_1 \cdot x_2 \leq 0.25$$
Main experimental uncertainties:
- Jet energy scale (15% to 60%)
- Jet energy resolution (1%)

Main theoretical uncertainties:
- PDF using PDF4LHC recipe (5% to 30%)
- Non-perturbative correction (2% to 15%)
- Scale (μ_r, μ_f) (2% to 32%)

Good agreement between data and NLO predictions!
\[\Delta \varphi_{dijet} = |\varphi_{jet1} - \varphi_{jet2}| \]

- Measurement sensitive to higher order radiation without the need to reconstruct the radiated jets

- Systematic uncertainty (3% to 11%):
 - Jet energy scale (1% to 5%)
 - Jet energy resolution (1% to 5%)
 - Unfolding (1.5% to 8%)
 - Smearing (2.5%)

- Reasonable agreement between PYTHIA6, HERWIG++ and data

- MADGRAPH (PYTHIA8) predicts less (more) decorrelations than data
\[\Delta \phi_{\text{dijet}} = |\phi_{\text{jet}1} - \phi_{\text{jet}2}| \]

- Measurement sensitive to higher order radiation without the need to reconstruct the radiated jets

- Systematic uncertainty (3% to 11%):
 - Jet energy scale (1% to 5%)
 - Jet energy resolution (1% to 5%)
 - Unfolding (1.5% to 8%)
 - Smearing (2.5%)

- Reasonable agreement between PYTHIA6, HERWIG++ and data

- \textbf{MADGRAPH (PYTHIA8)} predicts less (more) decorrelations than data
Δφ Decorrelations II

- **NLO pQCD predictions** using **NLOJET++**

- **Non-perturbative corrections** derived from **PYTHIA6** and **HERWIG++** (4% to 13%)

- **Theoretical uncertainty:**
 - Scale (μ_r, μ_f) (< 50%)
 - PDF using **CTEQ6.6** (2% to 9%)
 - Non-perturbative corrections (2% to 6%)

- NLO pQCD predictions mostly agree with data but undershoot the data for $\Delta\phi < 2\pi/3$ (effectively 2 \rightarrow 4 LO)
Variation of ISR parameter PARP(67) in PYTHIA6

- D6T value 2.5 (tuned to D0 data)
- Change by ± 0.5 and ± 1.5

Sensitive to initial state radiation and mostly insensitive to final state radiation

- Changing PARP(67) by ± 0.5 → ± 30% change in $\Delta\phi$
 - Could be used to further tune ISR
Probes the parton-parton scattering angle

QCD predicts a relatively flat χ distribution while new physics (quark compositeness) is expected to produce an excess at low values of χ

$$\chi_{dijet} = e^{y_1 - y_2} \sim \frac{1 + |\cos \theta^*|}{1 - |\cos \theta^*|}$$

The data is corrected to particle level (< 3%)

NLO pQCD predictions using NLOJET++

Non-perturbative corrections from PYTHIA6 and HERWIG++

Good agreement with pQCD predictions!
Experimental uncertainties (<3%):
- Jet energy scale (<2.5%)
- Jet energy resolution (<1%)
- Unfolding (<1%)

Theoretical uncertainties (<9%):
- Scale (μ_r, μ_f) (<9%)
- PDF using CTEQ6.6 (<0.5%)
- Non-perturbative correction (<4%)

Limits obtained using a modified CL_s approach:
- Exclude $\Lambda^+ < 5.6$ TeV at 95% CL (expected $\Lambda^+ < 5.0$ TeV)
- Exclude $\Lambda^- < 6.7$ TeV at 95% CL (expected $\Lambda^- < 5.8$ TeV)
Summary

- LHC and CMS performed extremely well in 2010
- CMS has a rich jet physics program including precise QCD measurements and searches of new phenomena
- Many results are already submitted for publication or published
 - Analyses are already beginning to exceed the Tevatron reach
- High probability of reaching 1/fb in the coming months (25/pb already collected)
- Many new and interesting physics results are on the way
- All CMS public results can be accessed at:

 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults