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DISCLAIMER

* What stated here is solely my thought, and not
an official sSPHENIX perspective.

e My goal is to draw your attention to interesting
physics that can be performed at forward /
backward rapidity at RHIC

o I’ll focus on A+A case

* I’'m not presenting full feasibility of this physics
in the currently planned sPHENIX / fsPHENIX
detector complex




HI collision dynamics

» Gold ions pass through each other
> High-x partons fly away

' © Low-x gluons remain in the mid-rapidity (y=0), and create “gluon
- matter” (CGQ?)

* CGC- Gluon Plasma—> QGP->Mixed phase—>
Hadronization+expansion

° Transition temperature (quark to hadron) : T, ,=~180MeV
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Gluon Plasma QGP phase Mixed phase = Hadronization +
Expansion

Parameters

At Hadronization: T ..., 1L},
At Expansion: T, B




HI collision dynamics question (I)

o Is this picture correct?

How the Quark Gluon Plasma develops from the initial A+A
collisions to the freezeout!

> Time evolution of the Quark Gluon Plasma
> Initial condition, etc.

Parameters

At Hadronization: T ..., 1L},
At Expansion: T, B

Gluon Plasma QGP phase Mixed phase = Hadronization +
Expansion



HI collision dynamics question(|1)

s The system expands longitudinally (beam direction) as well as
transversely (normal to beam direction)

« Question is whether the expansion is isotropic (and uniform)?

Transverse

,  Longitudinal
(beam direction)
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HI collision dynamics question(|1)

s The system expands longitudinally (beam direction) as well as
transversely (normal to beam direction)

* Question is whether the expansion is isotropic (and uniform)?

Transverse

,  Longitudinal
(beam direction)

These questions can be answered by looking at
observables at forward/backward rapidities



Selected results at mid-rapidity



|. Particle flow

¢ |n non-central collisions, the collision
area is not isotropic

o Different pressure gradient produces
momentum anisotropy of particles

o 2nd order Fourier coefficient shows the
elliptic flow

¢ Fluctuation of nucleon position yields
higher order anisotropy

o Higher order flow (v;,v,, ... v,) are
sensitive to the properties of the matter

> e.g. Shear viscosity (1) to Entropy
density (s) ratio (n/s)

dN
d(qb - \Iln)

vp, =< cos{n(¢ — ®,)} >

@, : Event Plane

= Np[1 + 2 Z vpcos{n(¢p — &,)}

Larger pressure
gradient in plane




v results with hydrodynamics model

» PHENIX (RHIC) and ATLAS (LHC) v, with a hydrodynamics model

» The model reproduces the higher order flow at RHIC, LHC very well
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> QGP as fluid consisting of partons

> Almost perfect fluid is realized at RHIC (n/s from quantum limit: ~1/4r)
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2. Jet energy loss

. High p; hadrons (n° etc.) are leading particles from jets (hard scattered
partons)

> A large fraction of jet momentum are carried

* Energy loss is turned into the yield suppression of high pT hadrons
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Yield suppression of leading particles

* Nuclear Modification Factor (R,,) N
> (Yield in A+A collision)/(Yield in p+p collision x Ncoll) [dps j
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3. Temperature was high (photons) ¢

e T

[(GeV/c)™?]
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2npr dprdy

ave

> c.f.LHC, Pb+Pb 2.76TeV: T.

ave

= 239 + 25(stat) + 7(syst) MeV (0-20%)
= 304 + 5 (stat+syst) MeV (0-40%)

*Phase transition would occur at T~180MeV

Direct photon spectra
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Going forward



fsPHENIX

GEM tracking stations

PbW (reuse of
PHENIX MPC)
3.3<n<4.0

New PbSc Hadronic
Calorimeter (1.2<n<4.0)
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Restacked PbSc EM Calorimeter
from PHENIX (1.4<n<3.3)



fsSPHENIX (w Hl-wish detector)

GEM tracking stations

PbW (reuse of
PHENIX MPC)
3.3<n<4.0

New PbSc Hadronic
Calorimeter (1.2<n<4.0)

Time-Of-flight for PID
(and pre-shower?)

Restacked PbSc EM Calorimeter
from PHENIX (1.4<n<3.3)



Detectors for forward HI physics

* Maybe peripheral to semi-central collisions are the targets
o Central is impossible because of multiplicity

¢ Instrumentation both forward and backward, ideally
° In order to perform wide-rapidity correlation measurement
> We can do forward-central correlation, too

EMCal with good position/energy resolution
> Higher granularity; n° and/or n, single photon separation is needed

Good tracking in high multiplicity environment

* A device to separate n/K/p (if possible)

> K/p separation may be enough, assuming 1° is well identified down to
low p; in EMCal

> A candidate device is time-of-flight?



Inclusive measurement



3D scan of QGP

¢ Mid- and forward rapidity have different p,
> Possibility of exploring different path in phase diagram

BRAHMS, PRL90, 102301 (2003)

» There are p; spectra for /K/p in Au+Au, Cu+Cu @200GeV

° Particle ratios (related to T, and ), Ty;, and 3 scale with N_,.. (dN/dy)

BRAHMS, PRC94,014907(2016)

* How about the temperature at forward rapidity?
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Jet suppression tells size of the matter

* Degree of the suppression can tell how much matter that the hard
scattered partons passed through

* Interesting to see more continuously over rapidity
> Need large statistics
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Flow tells “liquidity” of the system

» State-of-art hydrodynamical calculations were G. Denicol,A. Monnai, and B. Schenke,
compared with v, measurement by PHOBOS PRLI16,212301(2016)
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Rapidity correlation measurement



Before QGP = CGC?

‘The collision area is full of gluons in
the very initial stage

> Gluon plasma = g-gbar -> QGP

At very high energy, the small x
gluons increasing exponentially,
which eventually violates unitarity

> Small x gluons have to merge and
turn into higher x gluons

Color Glass Condensate (CGC)

° In highly non-linear state and has
strong correlation

Hadron yield will be reduced in low
pT at forward (backward) rapidity)

> Small x region
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Vo

CGC explains the p+A flow?
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Strong correlation from the initial high
density gluonic state (CGC) may have
survived until final state

Part of the v, measured in p+Pb collisions at

LHC can be explained, but not perfect

> No quantitative calculation is shown for RHIC
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Rapidity correlation is important!

|t is said that the correlation of particles with large rapidity gap comes
from the initial state of the collisions

¢ Simple causality argument (e.g. arXiv:1412.0471)

» Using this fact, one can dial the time in the system evolution
¢ e.g. CGC, pre-equilibrium state

detection (~1 m/c)

freeze out (~10 fm/c)

latest correlation




Using A+A and p+A
* One can dial the time in the system evolution

Both particles in very forward rapidity: tuning to very initial stage: CGC

Z1 = Pral Py
& =1In(1l/z;)
Xdir‘

away-side




Using A+A and p+A

* One can dial the time in the system evolution

Both particles in mid rapidity: tuning more into later stage: CGC+QGP

Xdir‘

Z1 = Pral Py
& =1In(1l/z;)

away-side



Taking flow (v,) as an example

e If there is no hydrodynamical flow in ptA, i.e., the flow is
built only by CGC (left)

A+A
A+A
V2 \) V2 \)
X A\)
ptA P+A
An=n,-1, An=n,-1,

e If there is hydrodynamical flow in ptA,i.e., the flow is built
by CGC+QGP (right)



Some news from QM2017



STAR Rapidity Correlations in BES

n+u+, 19.6GeV, 0-5%

Sedigheh Jowzaee,
Tue 17:30

R,(By,Ad)

 Two-particle correlation of pion pairs

 Charge independent new ridge structure
observed at around Vs, = 19.6 and 27 GeV
- no ridge at higher/lower energies
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Consequence of longitudinal fluctuation

Event plane Event plane
de-correlation twist
, F B
(@) N #N° (b) €, #€, (c) ¥, =Y,
V2 D, @D,

n direction n direction n direction
Event-by-Event Multiplicity
Fluctuations along n. EbE Flow fluctuations, in magnitude and direction

along n.

ATLAS Collaboration
arXiv:1606.08170 3-D initial condition!

Slides and data from S. Mohapatra (ATLAS) at QM17



De-correlation/twist measured by ATLAS

;e . Correlate k" power of nth
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De-correlation/twist measured by ATLAS
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Decorrelation not seen at RHIC?

Initial eccentricity
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Decorrelation not seen at RHIC?

Initial eccentricity
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Slides and plots from H. Nakagomi (PHENIX) at QMI7
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Why forward at RHIC even after LHC?

fsPHENIX rapidity is closer to the beam rapidity at RHIC
compared to the one at LHC

Beam rapidity for \/sNN=2.76TeV collisions is y=8.7,
o ATLAS measurement in [n|<2.4 (e.g. 1606.0817),

> ALICE FOCAL upgrade: 2.5<n<6

o Ay = 8.7-6 = 2.7

Beam rapidity for Vs, =200GeV is y=5.5,
o |If we instrument up to y=3.5, Ay=2.
> Covering more forward rapidity compared to LHC.

More hard scattering background at LHC as compared to RHIC
> Soft process increases with T = E!" while hard process is with (s)®
> RHIC is suitable place for detail investigation of QGP



To conclude

* HI measurement at forward (and backward) rapidity is definitely
new and there are likely many discoveries.

> Very little measurement so far
> Theory community rapidly gets interested in this region

¢ RHIC is the suitable place to do HI physics at forward rapidity
> PIDed flow, single measurement, correlation measurement
o Electro-magnetic probe for accessing initial temperature
° Full jet reconstruction may be hard

* Not necessarily have to be done in central Au+Au collisions
> Or, we can collide lighter nuclei

¢ Close tag with p+A/p+p collisions is essential
o Match the direction towards the EIC era?



Backup
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* HI physics field: QCD phase diagram

Net baryon density n/ n,

™~ Ny=0.16 fm=3

Compact Stars

i 3/10/2017  T. Sakaguchi @ RSC meeting at BNL
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Another way to look at dynamics

nucleusl nucleus2
Color Glass Condensate



Several quantities for Hl

¢ Number of participant nucleons
(Npart)

> Calculable from impact parameters

bl -

’
. o« e ,
> A measure of energy density Participant nucleons ( .
N

Spectator nucleons @

* Number of nucleon collisions (Ncoll)

> Number of nucleon collisions in an
event

o> Nucleons are considered to collide
individually in high energy collisions

r 0% centrality

o Centrality: Event class variable '—>
proportional to impact parameters | T
> 0%: b=0, <—.

o 100%: b=bmax,



Shooting thermal photons

» Hadron contamination to the photon samples has been a big issue

* Smallest hadron contamination when using photons converted to electron
pairs

Internal conversions (virtual photon) External conversions (real photon)

g Y L€ 9 Y :
\ \ ©

PN PN



Result improved theories

Large yield

o

Emission from the early stage where
temperature is high

Large elliptic flow (v,)

o

Emission from the late stage where the
collectivity is sufficiently built up

A big input to the time profile of
the theoretical model

o

[0}

o

o

A latest calculation of hydrodynamics
model did a fairly good job
PRL |14,072301(2015)

Ingredients discovered

Late stage emission (near freezeout)
Blueshift of spectra

Viscosity correction is necessary

arXiv:1509.07758
Comparison with 20-40% cent data
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Long—-range pseudo-rapidity correlation

Nature of sources seeding the long-range collective behavior?
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http://journals.aps.org/prc/abstract/10.1103/PhysRevC.93.044905
http://journals.aps.org/prc/abstract/10.1103/PhysRevC.87.024906

3.Thermal photons

Small Rate:Yield «< aa,

» Emitted from all the stages after collisions

¢ Penetrate the system unscathed after
emission

> Carry out thermodynamical information such as
temperature

e

* Photons will be produced by Compton
scattering or qgbar annihilation at LO

dR Qg 1
Ed3;:_ 72-2 ImHem(a),k)m

*Product of Bose distribution

II._: photon self energy and transition probability

Iml‘[em(a),k)zln( ot 2)
(my, (= gT))

Slope at E>>T tells
temperature (T~200MeV)

A recent review: TS, Pramana 84, 845(2015)




BRAHMS also measured this

» BRAHMS published n/K/p spectra in forward region in Cu+Cu collisions

_Particle ratios (related toT
from Au+Au collisions

and ), T,,, and B are compared with those

chem

* As found in mid-rapidity before, the parameters scales with N, (dN/dy)
> 3D profile of Au+Au and Cu+Cu collisions look similar
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