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OUTLINE

§ Superconducting Nanowire detectors – operation, capabilities
§ Superconducting nanowire detectors at EIC – opportunities, goals
§ Progress to date – beamline cryogenics integration, sensor design
§ Future – eRD28 and beyond
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Principle of operation
§ Uses quasi-particle avalanche 

process inside a current biased 
superconducting nanowire to 
detect scattering/absorption of 
individual quantum excitations

§ Much faster and more sensitive 
than ionization avalanches in 
semiconductor detectors

§ Can be used to detect photons, 
charged particles (and neutrons, 
indirectly) [1]
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Capabilities at a glance
§ The fastest and most precise “first-

gen” quantum detector of individual 
particles
– Energy thresholds as low as 

~100 meV
– Timing jitter easily 20-40 ps

(current record at 2.7 ps [2])
– Reset times can be as low as 5-

10 ns 
– Conveniently operates at 

roughly LHe temperatures

SUPERCONDUCTING NANOWIRE DETECTORS
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Capabilities at a glance, continued
§ Operates in magnetic fields of >5 T [3]
§ Zero dark counts
§ Can be made rad hard

SUPERCONDUCTING NANOWIRE DETECTORS
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Motivation
§ Good far-forward recoil acceptance critical for 

tagging the proton/nucleus in exclusive 
electro- and photo-production J/ψ and Υ, 
especially at threshold

– Conventional detectors of this type 
covered by eRD24

§ High position resolution, radiation hardness 
necessary for the Compton polarimeter

– See also eRD26
§ Coverage of currently empty regions (cold 

bore of superconducting magnets, front of 
ZDC, etc.) potentially enhances performance 
of detector(s)

§ Goal of eRD28: Demonstrate that these are a 
possibility, not necessarily build a complete 
system

SUPERCONDUCTING NANOWIRE DETECTORS 
AT EIC
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Portable beamline cryostat
§ Cryostat capable of dry (no liquid 

helium) operation, independent on 
beamline facility cryogenic systems
– Base temperature of 3 K

§ 8 RF channels (can add more)
§ 26 low frequency AC/DC channels

§ Initial testing currently in progress

PROGRESS TO DATE
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Sensor design
§ Experimental work and device 

fabrication on hold due to COVID-19
– Project restart currently ongoing
– Device patterning (lipography and 

etching) back online
– Thin film deposition being worked on
– Cryogenic device testbed operational 

as of this week

§ Detailed simulations of particle stopping 
inside sensor stack

§ Development of open-source simulation 
software [4] to aid future detector 
development

PROGRESS TO DATE 241Am source

Nanowire detectors
Cryo insert
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Sensor design
§ Development of open-source simulation software [4] to aid 

future detector development
– Massively parallel, multi-XPU
– High-level interface
– Possibility of interactive use
– Potential for tighter integration with EIC simulations
– Useful also outside of nanowire detector simulations
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Sensor design and testing
§ Design individual pixels for optimal 

performance for particle detection, 
beamline conditions:

§ High magnetic field
– Done

§ High count rate
– Can be increased by implementation of 

sub-pixels, larger wires,…
§ Larger single-pixel area

– Easier for particle detection because of 
wider wires

§ Radiation hardness
– Currently in progress, outlook positive

§ Discuss and cater to needs of other 
auxiliary detectors

FUTURE
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Detector design
§ Design a multi-pixel, multiplexed readout 

array
§ For purposes of eRD28, only small number 

of channels (8-16)
§ Perform detector tests with protons at 

Fermilab test beam

FUTURE



14

Beyond current eRD28 - hardware
§ Design and construct a Roman Pot-

style superconducting nanowire 
detector in the (extreme) far forward 
region of the hadron beam
– Truly zero-edge (~1 um from chip 

edge) sensor design, field and 
cryo-tolerance allow for greater 
flexibility in positioning along the 
accelerator lattice

§ Explore possibilities of integration in 
other parts of EIC
– Tracking inside the cold bore of 

the superconducting magnets
– Neutral particle tracker in front of 

ZDC 

FUTURE
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Beyond current eRD28 - Software
§ Continue development of software 

for simulation of sensor response in 
close collaborations with detector 
simulation developers

§ Allows for optimization of parts of 
the detector at a much lower level 
than with other technologies

FUTURE

Physics requirements → Detector simulation → Sensor requirements → 
Sensor simulation → Fabrication requirements → Fabrication process → 
Finalized detector
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