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• Copious production of jets at 
Hadron colliders.

• Boosted top quark (or New 
Physics particles) could produce 
single jet signal at the Large 
Hadron Collider (LHC). 

• To discriminate QCD jets from 
boosted top jet (or New 
Physics ) signal, we   

need to study jet substructure

Motivation



Almeida,  arxiv:0810.0934
Thaler & Wang,  arxiv:0806.0023

Jet substructure observables 

jet mass

jet energy
profile
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Fig. 3. The measured jet shapes, with effects due to the calorimetric 
measurement removed, compared to NLO predictions with two 
renormalization scales for 2.5 5 101 2 3.0 for the jet ET range 
(a) 45-70 GeV and (b) 70- 105 GeV. 

tered into one jet, using the D0 definition of 7 and 
4, if they are within a distance of 1.0 of each other in 
v - 4 space. The energies of these jets are defined as 
the sum of the energies of the partons in the jets and 
the jet directions are the vector sums of the momenta 
of the partons. The jet shape predictions were calcu- 
lated in the same ET and r] ranges as the data, using 
the CTEQ2M [ 141 parton distribution function (pdf) 
and three values of the renormalization scale, ,X =ET, 
ET/~, and ET/~. They were also calculated using the 
MRSD-’ [ 151 pdf and were found to be insensitive 
to this change. At the lower two jet ET ranges, the 
theoretical predictions are narrower than the data for 
all values of ,u and are narrower for all values except 
,u = ET/~ for the higher two ET ranges. Both the data 
and the theoretical predictions narrow with increasing 
jet ET but the measured jets narrow more quickly than 
the predictions. 

Fig. 3 shows the measured jet shapes in the forward 
region for two jet ET ranges and the values of p( r) are 
listed in Table 2. The measured jets are observed to 
narrow with increasing jet ET. Comparing Figs. 2 and 
3, it is observed that jets of the same ET are narrower 
in the forward region than in the central region. Com- 
parisons to the JETRAD predictions in the forward 
region are shown using two values of the renormaliza- 
tion scale. The theoretically predicted jet shapes are 
narrower than the data in both ET ranges and do not 
narrow with increasing jet ET. As observed in the data, 
the theoretically predicted jet shapes are narrower in 
the forward region than in the central for jets of the 
same ET, but they do not narrow as much as the data. 

Comparison of HERWIG simulations of jet shapes 

Table 2 
The measured jet shapes at the particle level for jets located at 2.5 
< 171 < 3.0. Listed in the table is the value of p as a function 
of the radial distance from the jet axis r for the two forward ET 
regions. 

Subcone 
radius 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

p(r) 

45-70 GeV 
(ET) = 52 GeV 

.49f .028 

.67f ,026 

.76f ,018 

.82f ,014 

.86f ,012 

.9Ok ,010 

.93& .007 

.96k .005 

.98f .003 
1.0 60.0 

70-105 GeV 
(ET) = 77 GeV 

.59f ,039 

.75f ,035 
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,885 .025 
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.94~k ,018 
.96i ,008 
.98f ,006 
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Fig. 4. The measured jet shapes at the particle level for jets with 
45 < ET < 70 compared to NLO predictions for different parton 
clustering algorithms for (a) 171 5 0.2 and (b) 2.5 < 171 5 3.0. 

before fragmentation (parton level) and after (parti- 
cle level) shows that the effects of fragmentation pro- 
cesses are important and tend to broaden the jets in 
both the central and forward regions. 

Although the experimental cone algorithm is well 
defined, it cannot be simulated exactly in the theo- 
retical parton level prediction. We have investigated 
the effect on the jet shape when using different par- 
ton clustering algorithms in the predictions as shown 
in Fig. 4. 

The JBTRAD clustering algorithm was described 
previously. The JETRAD-2 algorithm clusters two 
partons into a single jet if they are each within a 
distance of 1.0 of their vector sum, creating jets with 
the same radius as in the experimental measurement. 
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Fig. 4. The measured jet shapes at the particle level for jets with 
45 < ET < 70 compared to NLO predictions for different parton 
clustering algorithms for (a) 171 5 0.2 and (b) 2.5 < 171 5 3.0. 
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the same radius as in the experimental measurement. 



• Event Generators: leading log radiations, 
hadronization, underlying events, etc.

• Fixed order QCD calculation: finite 
number of soft/collinear radiations

• Resummation: all order soft/collinear 
radiations 

Various Theoretical Predictions

NLO



CTEQ
MSTW
NNPDF

Factorization Theorem



Eikonalization

Soft/collinear radiations can be detached by eikonalization 

Eikonal vertices and eikonal propagators of 
soft/collinear radiations can be 

factorized and combined into Wilson line

⊗



Jet Function

Almeida,  arxiv:0810.0934

LO Jet:

Quark Jet:

Gluon Jet:

dσ

dPT dMJ
=

�

c

2MJJc(MJ , PT , R)
dσc

dPT



Diagrams for NLO calculations

NLO Quark:

NLO Gluon:
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Fixed order prediction has singularity at MJ->0

NLO

√
S = 1.96TeV

pT = 600GeV
R = 0.4

quark jet

anti-kT algorithm

Dij = min(P−2
Ti , P−2

Tj )
∆R2

ij

R2

Di = P−2
Ti

d = min({Dij , Di})

NLO singularity



Resummation for Jet function
(jet mass distribution)

In fixed order calculations, there are large logarithmic 
terms of the ratio of jet pT to jet mass,

which can be resummed by applying 
renormalization group (RG) technique.

The key idea of resummation technique is to 
vary Wilson line direction to arbitrary gauge 
vector n, since collinear dynamics is 
independent of n.

ln
�

MJ

RPT

�



Soft Gluon Factorization

LO soft kernel K(1)
v

~ ⊗

~

LO soft kernel 

⊗

K(1)
r



Up to leading logarithms, RG equation is 

To include next-to-leading-log contribution, G and K
are evaluated to two loops. 

RG Equation for Jet function

~ ~ ⊗

LO hard kernel G(1)



Mellin transform converts convolution to multiplication

Jet function (in Mellin space), including resummation effect:

=
αs

2π
CF ln

a4C2
2

R2P 2
T µ2

, (14)

where the infrared regulator a2 will approach zero eventually.
It is necessary to perform the resummation in the conjugate space via the Mellin transform. The reason is evident

by comparing the expressions for the convolutions of the virtual and real soft corrections with the LO jet function:
the former leads to K(1)

v ⊗ J (0) = K(1)
v δ(m2

J), while the latter leads to

K(1)
r ⊗ J (0)

q = g2CF

∫
d4l

(2π)4
n̂ · PJ

(n · l + iε)(PJ · l − iε)
2πδ(l2)δ(m2

J − 2PJ · l),

=
αs

π
CF

1
m2

J

, (15)

If treating the jet function as a distribution function, which will be convoluted with other subprocesses in a cross
section, the infrared divergences from mJ → 0 in the above two pieces cancel exactly. This cancellation can be made
explicit under the Mellin transformation

J̄q(N, PT , ν2, R, µ2) ≡
∫ 1

0
dx(1 − x)N−1Jq(x, PT , ν2, R, µ2), (16)

with the dimensionless variable x ≡ m2
J/(RPT )2.

The convolution in Eq. (11) is then converted into a product in the conjugate space
∫ 1

0
dx(1 − x)N−1K(1)

r ⊗ Jq = K̄(1)
r (N)J̄q(N, PT , ν2, R, µ2), (17)

with the definition

K̄(1)
r (N) = g2CF

∫ 1

0
dz(1 − z)N−1

∫
d4l

(2π)3
2PJ · ln2

(n · l + iε)2(2PJ · l + a2)
δ(l2)δ

(
z − 2

|l|
RPT

(1 − cos θ)
)

. (18)

To derive the above expression, we have made the small-mass approximation 1 − β cos θ ≈ 1 − cos θ, inserted the
identities

∫
dzδ(z − 2|l|(1 − cos θ)/(RPT )) = 1 and

∫
dyδ(x − y − z) = 1, and adopted the approximation 1 − x =

1 − y − z ≈ (1 − y)(1 − z), which holds in the dominant region with small y and z.
We evaluate Eq. (18) by splitting it into two pieces

K̄(1)
r (N) = g2CF

∫ 1

0
dz[(1 − z)N−1 − 1]

∫
d4l

(2π)3
n2

(n · l + iε)2
δ(l2)δ

(
z − 2

|l|
RPT

(1 − cos θ)
)

Θ(R − θ)

+g2CF

∫ 1

0
dz

∫
d4l

(2π)3
2PJ · ln2

(n · l + iε)2(2PJ · l + a2)
δ(l2)δ

(
z − 2

|l|
RPT

(1 − cos θ)
)

, (19)

where the infrared regulator a2 has been neglected in the first term, because of the absence of the infrared divergence
from z → 0. The first term collects contribution from finite loop momentum l, so we have associated a step function
Θ(R − θ) with it to constrain the angle θ within the jet cone R. Because the second term is dominated by the loop
momentum l → 0, which is below a detector resolution, there is no need to constrain the angle θ. A straightforward
calculation with the parametrization n = (n0, nx, 0, 0) leads to

K̄(1)
r (N) =

αs

2π
CF

(n0 + nx)(1 − cosR)
n0 − nx cosR

∫ 1

0

dz

z
[(1 − z)N−1 − 1]

+
αs

2π
CF

∫ 1

−1
d cos θ

n2

(n0 − nx cos θ)2

∫ 1

0
dz

1
z + a2/(RPT )2

,

=
αs

π
CF

[
4(1 − cosR)

4(1 − cosR) + ν2R2(1 + cosR)

(
ln

1
N

− γE

)
+ ln

R2P 2
T

a2

]
,

=
αs

π
CF

[
ln

R2P 2
T

N̄a2
− ν2R2(1 + cosR)

4(1 − cosR) + ν2R2(1 + cosR)
ln

1
N̄

]
, (20)
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ln
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,
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π
CF

[
ln
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T
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− ν2R2(1 + cosR)

4(1 − cosR) + ν2R2(1 + cosR)
ln

1
N̄

]
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Solving the renormalization-group (RG) equations,

µ
d

dµ
G = λK = −µ

d

dµ
K, (22)

with the anomalous dimension

λK ≡ µ
d

dµ
δK = −µ

d

dµ
δG =

αs

π
CF , (23)

we derive

K

(
RPT C1

N̄µ
, αs(µ2)

)
+ G

(
C2ν2RPT

µ
, αs(µ2)

)

= K

(
1, αs

(
R2P 2

T C2
1

N̄2

))
+ G

(
1, αs

(
C2

2ν4R2P 2
T

))
−

∫ C2ν2RPT

C1RPT /N̄

dµ

µ
λK(αs(µ2)),

=
CF

π
αs

(
C2

1R2P 2
T

N̄2

)
ln

C2

C1
+

CF

2π
αs

(
C2

2ν4R2P 2
T

)
−

∫ C2ν2

C1/N̄

dω

ω
λK(αs(ω2R2P 2

T )). (24)

We then deal with the differential equation

− n2

v · nvα
d

dnα
J̄q(N, PT , ν2, R, µ2) = 2ν2 d

dν2
J̄q(N, PT , ν2, R, µ2)

= 2
[
K

(
RPT C1

N̄µ
, αs(µ2)

)
+ G

(
C2ν2RPT

µ
, αs(µ2)

)]
J̄q(N, PT , ν2, R). (25)

The strategy is to solve the above differential equation, and evolve ν2 from the low value ν2
in = C1/(C2N̄) to the

large value ν2
fi = 1, which correspond to the specific choices n = nin ≡ (1, (4C2N̄ − C1)/(4C2N̄ + C1), 0, 0) and

n = nfi ≡ (1, 3/5, 0, 0), respectively. The former represents the initial condition of the jet function, which can be
calculated up to a fixed order, because of the vanishing of the logarithm ln(ν2N̄). The latter is the all-order jet
function that resums this large logarithm ln(N̄). It will be used in the evaluation of cross section. Therefore, the
solution of RG equation is given by

J̄q(N, PT , ν2
fi, R, µ2) = J̄q(N, PT , ν2

in, R, µ2) exp[S(N)] (26)

The R dependence appears through the single logarithmic term in the Sudakov exponent. Here the Sudakov is written
as

S(N) = −
∫ 1

C1/(C2N̄)

dν2

ν2

{∫ C2ν2

C1/N̄

dω

ω
λK(αs(ω2R2P 2

T )) − CF

2π
αs(C2

2ν4R2P 2
T ) − CF

π
αs

(
C2

1R2P 2
T

N̄2

)
ln

C2

C1

}

= −
∫ C2

C1/N̄

dC2ν2

C2ν2

{∫ C2ν2

C1/N̄

dω

ω
λK(αs(ω2R2P 2

T )) − CF

2π
αs(C2

2ν4R2P 2
T ) − CF

π
αs

(
C2

1R2P 2
T

N̄2

)
ln

C2

C1

}

= −
∫ C2

C1/N̄

dy

y

{∫ y

C1/N̄

dω

ω
λK(αs(ω2R2P 2

T )) − CF

2π
αs(y2R2P 2

T ) − CF

π
αs

(
C2

1R2P 2
T

N̄2

)
ln

C2

C1

}
(27)

In above expression, we further evolve αs from scale C1RPT /N̄ to yRPT as follows

−CF

π
αs

(
C2

1R2P 2
T

N̄2

)
= −CF

π

[∫ αs(C2
1R2P 2

T /N̄2)

αs(yRPT )
dαs + αs(y2R2P 2

T )

]

= CF

[∫ yRPT

C1RPT /N̄

dµ

µ
2β(αs(µ2)) − αs(y2R2P 2

T )
π

]

=
∫ y

C1/N̄

dω

ω
CF 2β(αs(ω2R2P 2

T )) − CF

π
αs(y2R2P 2

T ) (28)
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= 2
[
K

(
RPT C1

N̄µ
, αs(µ2)

)
+ G

(
C2ν2RPT

µ
, αs(µ2)

)]
J̄q(N, PT , ν2, R). (25)

The strategy is to solve the above differential equation, and evolve ν2 from the low value ν2
in = C1/(C2N̄) to the

large value ν2
fi = 1, which correspond to the specific choices n = nin ≡ (1, (4C2N̄ − C1)/(4C2N̄ + C1), 0, 0) and

n = nfi ≡ (1, 3/5, 0, 0), respectively. The former represents the initial condition of the jet function, which can be
calculated up to a fixed order, because of the vanishing of the logarithm ln(ν2N̄). The latter is the all-order jet
function that resums this large logarithm ln(N̄). It will be used in the evaluation of cross section. Therefore, the
solution of RG equation is given by

J̄q(N, PT , ν2
fi, R, µ2) = J̄q(N, PT , ν2

in, R, µ2) exp[S(N)] (26)

The R dependence appears through the single logarithmic term in the Sudakov exponent. Here the Sudakov is written
as

S(N) = −
∫ 1

C1/(C2N̄)

dν2

ν2

{∫ C2ν2

C1/N̄

dω

ω
λK(αs(ω2R2P 2

T )) − CF

2π
αs(C2

2ν4R2P 2
T ) − CF

π
αs

(
C2

1R2P 2
T

N̄2

)
ln

C2

C1

}

= −
∫ C2

C1/N̄

dC2ν2

C2ν2

{∫ C2ν2

C1/N̄

dω

ω
λK(αs(ω2R2P 2

T )) − CF

2π
αs(C2

2ν4R2P 2
T ) − CF

π
αs

(
C2

1R2P 2
T

N̄2

)
ln

C2

C1

}

= −
∫ C2

C1/N̄

dy

y

{∫ y

C1/N̄

dω

ω
λK(αs(ω2R2P 2

T )) − CF

2π
αs(y2R2P 2

T ) − CF

π
αs

(
C2

1R2P 2
T

N̄2

)
ln

C2

C1

}
(27)

In above expression, we further evolve αs from scale C1RPT /N̄ to yRPT as follows

−CF

π
αs

(
C2

1R2P 2
T

N̄2

)
= −CF

π

[∫ αs(C2
1R2P 2

T /N̄2)

αs(yRPT )
dαs + αs(y2R2P 2

T )

]

= CF

[∫ yRPT

C1RPT /N̄

dµ

µ
2β(αs(µ2)) − αs(y2R2P 2

T )
π

]

=
∫ y

C1/N̄

dω

ω
CF 2β(αs(ω2R2P 2

T )) − CF

π
αs(y2R2P 2

T ) (28)
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Jet mass distribution
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FIG. 7: N-contour in upper half plane used in our inverse Mellin transform.

In the inverse Mellin transform, we have employed the factor (1 − x)N−1 with x = (mJ/(RPT ))2. As x → 0,
all moments in N are equally important, and those containing lnN will be the dominant ones. Therefore, our
resummation formalism, in which these large logarithms are summed up, is reliable in the small x region. We stress
that the soft scale RPT /N becomes so low at extremely large N , where the running coupling constant is huge, and
the expansion parameter αs ln N becomes much larger than order unity. That is, our resummation formalism should
fail at extremely large N (no matter how small x is), and demands the inclusion of nonperturbative physics. As x
grows gradually, the large-N moments become less crucial. and those of intermediate N are relevant. If extrapolating
our large-N resummation formalism to finite x, it is not reliable. The question is then as follows: at which x the
gluon jet function becomes unreliable. Perhaps, it becomes unreliable starting from a smaller x than in the case of
the light quark jet. That is the reason we do not see a fast decrease at large mJ for the gluon jet function. The above
discussion has nothing to do with the numerical convergence in the large-N region, when performing the inverse Mellin
transformation. Actually, a fixed-order calculation is more reliable at finite x. Hence, it is an appropriate procedure
to match the resummation and NLO results for the distribution of QCD jets in the jet invariant mass.

In order to handle small jet mass region, where a nonperturbative (NP) effect is expected to be important and our
pQCD resummation expression does not work well, we introduce a NP correction term into the Sudakov exponent in
N space,

SNP (N) =
N2Q2

0

R2P 2
T

(Ccα0 ln N + α1) + Ccα2
NQ0

RPT
(62)

with Q0 = 1 GeV and Cc = CF (CA) for quark (gluon). Without the above NP term, the jet function can not describe
data very well in small jet mass region, which involves NP effect. We then fit the NP parameters with the PYTHIA
predictions. The resummation formula including non-perturbative is

J̄RES
q (N) =

1
R2P 2

T

{
1 +

CF

π
αs

(
µ2 = C2

3R2P 2
T

) [
1
2

ln
C1

C2
− 1

2
ln2 C1

C2
+

1
2
γE − π2

4
− 9

8

]}

× exp

{
−

∫ C2

C1/N̄

dy

y

[
A(αs(y2R2P 2

T )) ln
(

C2

y

)
+ B(αs(y2R2P 2

T ))
]}

× exp
{

N2Q2
0

R2P 2
T

(CF α0 ln N + α1) + CF α2
NQ0

RPT

}
(63)

J̄RES
g (N) =

1
R2P 2

T

{
1 +

CA

π
αs

(
µ2 = C2

3R2P 2
T

) [
1
2

ln
C1

C2
− 1

2
ln2 C1

C2
− 5

12
γE − π2

4
+

1
2
(ln 2 − 3) +

1
36

]}

Non-perturbative contribution is needed for small MJ.

J̄q(N,PT , ν2
fi, R, µ2) = J̄q(N, PT , ν2

in, R, µ2) exp[S(N) + SNP (N)]

Non-perturbative parameters were fit at pT=600GeV with 
R=0.7.

Quark

Gluon

PYTHIA8+SpartyJet

pT=600GeV
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Quark and gluon jets at pT=400GeV

Agree with PYTHIA prediction for various pT and R.

Quark

Gluon
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Jet energy profile

Jet energy profile         can be obtained by inserting 
the step function in the jet function:

to the jet axis. For example the NLO JE is expressed as

JE(1)
q (m2

J , PT , ν2, R, µ2) =
(2π)3

2
√

2(P 0
J )2Nc

∑

σ,λ

∫
d3p

(2π)32ωp

d3k

(2π)32ωk
[p0Θ(R − θp) + k0Θ(R − θk)]

×Tr
{
$ ξ〈0|q(0)W (q̄)†

ξ (∞, 0)|p, σ; k, λ〉〈k, λ; p, σ|W (q̄)
ξ (∞, 0)q̄(0)|0〉

}

×δ(m2
J − (p + k)2)δ(n̂ − n̂$p+$k)δ(P 0

J − p0 − k0),

JE(1)
g (m2

J , PT , ν2, R, µ2) =
(2π)3

2(P 0
J )3Nc

∑

σ,λ

∫
d3p

(2π)32ωp

d3k

(2π)32ωk
[p0Θ(R − θp) + k0Θ(R − θk)]

×〈0|ξσF σν(0)W (g)†
ξ (∞, 0)|p, σ; k, λ〉〈k, λ; p, σ|W (g)

ξ (∞, 0)F ρ
ν (0)ξρ|0〉

×δ(m2
J − (p + k)2)δ(n̂ − n̂$p+$k)δ(P 0

J − p0 − k0). (67)

This is the reason why the r dependence of JE is absent at LO, because θ = 0 at this order. The corrections of the
virtual gluons emitted from the special vertex are factorized into the same hard function G(1) and soft function K(1)

v .
The above statements apply to both the light-quark and gluon jets. besides, we shall not specify the dependence on
the factorizations scale µ, which can be removed by an appropriate choice of the scale.

We first study the energy profile of the quark jet JE
q . For the real soft gluon emitted from the special vertex, we

split the sum of the step functions into

∑

i

k0
i Θ(r − θi) =

′∑

i

k0
i Θ(r − θi) + l0Θ(r − θ), (68)

where
∑′ means a summation over final-state particles with the differentiated gluon being excluded. The first term

leads to

K(1)
r ⊗ JE

q = g2CF

∫
d4l

(2π)4
n̂ · PJ

(n · l + iε)(PJ · l − iε)
2πδ(l2)JE

q (m2
J − 2PJ · l, PT , ν2, R, r). (69)

Because of the emission of the real soft gluon from the special vertex, the jet axis of the rest of particles, described
by JE

q on the right-hand side of the above expression, has inclined by an angle l0 sin θ/PT with respect to the jet
momentum PJ . Certainly, the jet axis of the rest of particles can not incline to outside of the smaller jet cone r. Then
the momentum conservation imposes a constraint on the kinematics of the differentiated real soft gluon:

l0 sin θ

PT
≤ r. (70)

Applying the Mellin transformation, we have
∫ 1

0
dx(1 − x)N−1K(1)

r ⊗ JE
q = K̄(1)

r (N)J̄E
q (N, PT , ν2, R, r), (71)

with the definition

K̄(1)
r (N) = g2CF

∫ 1

0
dz(1 − z)N−1

×
∫

d4l

(2π)3
2PJ · ln2

(n · l + iε)2(2PJ · l + a2)
δ(l2)δ

(
z − 2|l|

PT
(1 − cos θ)

)
Θ

(
r − |l| sin θ

PT

)
. (72)

The second term in Eq. (68) leads to

K(1)
e ⊗ Jq = g2CF

∫
d4l

(2π)4
n̂ · PJ l0Θ(r − θ)

(n · l + iε)(PJ · l − iε)
2πδ(l2)Jq(m2

J − 2PJ · l, PT , ν2, R). (73)

The Mellin transformation of the above convolution gives
∫ 1

0
dx(1 − x)N−1K(1)

e ⊗ Jq = K̄(1)
e (N)J̄q(N, PT , ν2, R), (74)

to the jet axis. For example the NLO JE is expressed as

JE(1)
q (m2

J , PT , ν2, R, µ2) =
(2π)3

2
√

2(P 0
J )2Nc

∑

σ,λ

∫
d3p

(2π)32ωp

d3k

(2π)32ωk
[p0Θ(R − θp) + k0Θ(R − θk)]

×Tr
{
$ ξ〈0|q(0)W (q̄)†

ξ (∞, 0)|p, σ; k, λ〉〈k, λ; p, σ|W (q̄)
ξ (∞, 0)q̄(0)|0〉

}

×δ(m2
J − (p + k)2)δ(n̂ − n̂$p+$k)δ(P 0

J − p0 − k0),

JE(1)
g (m2

J , PT , ν2, R, µ2) =
(2π)3

2(P 0
J )3Nc

∑

σ,λ

∫
d3p

(2π)32ωp

d3k

(2π)32ωk
[p0Θ(R − θp) + k0Θ(R − θk)]

×〈0|ξσF σν(0)W (g)†
ξ (∞, 0)|p, σ; k, λ〉〈k, λ; p, σ|W (g)

ξ (∞, 0)F ρ
ν (0)ξρ|0〉

×δ(m2
J − (p + k)2)δ(n̂ − n̂$p+$k)δ(P 0

J − p0 − k0). (67)

This is the reason why the r dependence of JE is absent at LO, because θ = 0 at this order. The corrections of the
virtual gluons emitted from the special vertex are factorized into the same hard function G(1) and soft function K(1)

v .
The above statements apply to both the light-quark and gluon jets. besides, we shall not specify the dependence on
the factorizations scale µ, which can be removed by an appropriate choice of the scale.

We first study the energy profile of the quark jet JE
q . For the real soft gluon emitted from the special vertex, we

split the sum of the step functions into

∑

i

k0
i Θ(r − θi) =

′∑

i

k0
i Θ(r − θi) + l0Θ(r − θ), (68)

where
∑′ means a summation over final-state particles with the differentiated gluon being excluded. The first term

leads to

K(1)
r ⊗ JE

q = g2CF

∫
d4l

(2π)4
n̂ · PJ

(n · l + iε)(PJ · l − iε)
2πδ(l2)JE

q (m2
J − 2PJ · l, PT , ν2, R, r). (69)

Because of the emission of the real soft gluon from the special vertex, the jet axis of the rest of particles, described
by JE

q on the right-hand side of the above expression, has inclined by an angle l0 sin θ/PT with respect to the jet
momentum PJ . Certainly, the jet axis of the rest of particles can not incline to outside of the smaller jet cone r. Then
the momentum conservation imposes a constraint on the kinematics of the differentiated real soft gluon:

l0 sin θ

PT
≤ r. (70)

Applying the Mellin transformation, we have
∫ 1

0
dx(1 − x)N−1K(1)

r ⊗ JE
q = K̄(1)

r (N)J̄E
q (N, PT , ν2, R, r), (71)

with the definition

K̄(1)
r (N) = g2CF

∫ 1

0
dz(1 − z)N−1

×
∫

d4l

(2π)3
2PJ · ln2

(n · l + iε)2(2PJ · l + a2)
δ(l2)δ

(
z − 2|l|

PT
(1 − cos θ)

)
Θ

(
r − |l| sin θ

PT

)
. (72)

The second term in Eq. (68) leads to

K(1)
e ⊗ Jq = g2CF

∫
d4l

(2π)4
n̂ · PJ l0Θ(r − θ)

(n · l + iε)(PJ · l − iε)
2πδ(l2)Jq(m2

J − 2PJ · l, PT , ν2, R). (73)

The Mellin transformation of the above convolution gives
∫ 1

0
dx(1 − x)N−1K(1)

e ⊗ Jq = K̄(1)
e (N)J̄q(N, PT , ν2, R), (74)

At NLO, J̄q
E ≈

αsCF

P 0
J π

�
−1

4
ln2 R2

r2
− 3

4
ln

R2

r2

�
.

which is an integrable singularity.
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Jet energy profile @ CDF

Gluon jet dominates in low pT region.
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= K
(
1, αs

(
ν2P 2

T r2
))

+ G
(
1, αs

(
ν4P 2

T

))
− 1

2

∫ ν4P 2
T

ν2P 2
T r2

dµ2

µ2
λK(αs(µ2)),

=
αs

(
ν4P 2

T

)

2π
CF − 1

2

∫ ν4

ν2r2

dω

ω
λK(αs(ωP 2

T )). (80)

At last, J̄E
q obeys a similar differential equation

− n2

v · nvα
d

dnα
J̄E

q (1, PT , ν2, R, r) = 2ν2 d

dν2
J̄E

q (1, PT , ν2, R, r)

= 2[G(1) + K(1)(1)]J̄E
q (1, PT , ν2, R, r). (81)

The strategy is to evolve ν2 from the low value ν2 = r2 to the large value ν2 = R2, which correspond to the specific
choices n = nin ≡ (1, (4 − r2)/(4 + r2), 0, 0) and n = nfi ≡ (1, (4 − R2)/(4 + R2), 0, 0), respectively. The solution is
given by

J̄E
q (1, PT , ν2

fi, R, r) = J̄E
q (1, PT , ν2

in, R, r) exp

{
−

∫ CR2

Cr2

dy

y

[
1
2

∫ y2

yr2

dω

ω
λK(αs(ωP 2

T )) −
αs

(
y2P 2

T

)

2π
CF

]}
, (82)

where the O(1) constant C is chosen as C = exp(5/2) (C = exp(17/6)) for the quark (gluon) jet in order to
reproduce the single logarithm αs ln r. It is observed that the R dependence appears through the initial condition
J̄E(1, PJ , ν2

in, R, r) and the upper bound of the Sudakov evolution. It is easy to see that the jet energy profile defined
in terms of the above solution

Ψq(r) ≡
J̄E

q (1, PT , ν2
fi, R, r)

J̄E
q (1, PT , ν2

in, R, R)
, (83)

respects the normalization Ψq(R) = 1. Note that the jet profile for N = 1, i.e., with the jet invariant mass integrated
out, is not sensitive to the nonperturbative physics.

For arbitrary gauge, we have asymptotic expression

J̄q,asym
E (1, P 0

J , nx, r, R) =
αsCF

P 0
J π

[
−1

4
ln2 4(1 − nx)

r2(1 + nx)
+

3
4

ln
4(1 − nx)
r2(1 + nx)

]
. (84)

J̄g,asym
E (1, P 0

J , nx, r, R) =
αsCA

P 0
J π

[
−1

4
ln2 4(1 − nx)

r2(1 + nx)
+

11
12

ln
4(1 − nx)
r2(1 + nx)

]
. (85)

in the r → 0 limit. It is trivial to see that the expansion of the resummation exponent in Eq. (82) up to NLO in αs

is in agreement with Eq. (??).

V. CONCLUSION

We have developed a theoretical framework for studying jet physics based on the QCD resummation technique in
this paper. The evolution equations for a light-quark jet function and for a gluon jet function have been derived
and solved numerically. The solutions have been compared with the results from the PYTHIA simulation, the CDF
data, and the ATLAS and CMS preliminary data, and a consistency has been observed for the distribution in the jet
invariant mass for different jet energy. Our formalism does not involve tunable parameters, but nonperturbative inputs
in the large N region are necessary. These inputs suppress contributions from the Landau pole as PT /N → ΛQCD

during the inverse Mellin transformation from the N space to the jet mass space. Our solutions from the resummation
formalism are ready to be implemented into the factorization formulas for jet production cross section. The analysis
does not depend on specific algorithms adopted in usual event generators, and is free from the ambiguity of scale
choices.

We have also derived evolution equations for the energy profiles Ψ(r) of a light-quark jet and of a gluon jet. The
solutions, in which the jet invariant mass is integrated out, are also consistent with the results from the PYTHIA
simulation, the CDF data, and the ATLAS and CMS preliminary data for different jet energy: a light-quark jet
has a narrower energy profile than a gluon jet. It implies that our formalism for the jet energy profile can be used

128GeV < P jet
T < 148GeV

340GeV < P jet
T < 380GeV

37GeV < P jet
T < 45GeV



Jet energy profile @ CMS
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Summary
Studying jet substructure is useful for testing Standard Model 
and identifying New Physics. 
 Fixed-order calculations in jet mass distribution and jet 

energy profile contain large logs, making predictions unreliable in 
small jet mass or small r region.

 QCD resummation provides reliable prediction and making 
independent check to full event generators.

 Resummed jet mass distribution including non-perturbative 
contribution agrees with PYTHIA8 for different jet pT and R, 
and Tevatron CDF data.

 Resummation predictions for jet energy profile agree with 
CDF and CMS data. 

 Our formalism can be extended for heavy quark jet, e.g., a 
boosted top quark jet.  (in progress)

 Same formalism can be used in jet study at HERA and RHIC.



Backup slides



Non-perturbative term
transformation. Actually, a fixed-order calculation is more reliable at finite x. Hence, it is an appropriate procedure
to match the resummation and NLO results for the distribution of QCD jets in the jet invariant mass.

In order to handle small jet mass region, where a nonperturbative (NP) effect is expected to be important and our
pQCD resummation expression does not work well.

∫ 1
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dy
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∫ y
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ω
αs(ωRPT )

≈
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0
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→ NQ0
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α0 (63)

We introduce a NP correction term into the Sudakov exponent in N space,

SNP (N) =
N2Q2

0

R2P 2
T

(Ccα0 ln N + α1) + Ccα2
NQ0

RPT
(64)

with Q0 = 1 GeV and Cc = CF (CA) for quark (gluon). Without the above NP term, the jet function can not describe
data very well in small jet mass region, which involves NP effect. We then fit the NP parameters with the PYTHIA
predictions. The resummation formula including non-perturbative is
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{
1 +

CF

π
αs

(
µ2 = C2

3R2P 2
T

) [
1
2

ln
C1

C2
− 1

2
ln2 C1

C2
+

1
2
γE − π2

4
− 9

8

]}

× exp

{
−

∫ C2

C1/N̄

dy

y

[
A(αs(y2R2P 2

T )) ln
(

C2

y

)
+ B(αs(y2R2P 2

T ))
]}

× exp
{

N2Q2
0

R2P 2
T

(CF α0 ln N + α1) + CF α2
NQ0

RPT

}
(65)

J̄RES
g (N) =

1
R2P 2

T

{
1 +

CA

π
αs

(
µ2 = C2

3R2P 2
T

) [
1
2

ln
C1

C2
− 1

2
ln2 C1

C2
− 5

12
γE − π2

4
+

1
2
(ln 2 − 3) +

1
36

]}

× exp

{
−

∫ C2

C1/N̄

dy

y

[
A(αs(y2R2P 2

T )) ln
(

C2

y

)
+ B(αs(y2R2P 2

T ))
]}

× exp
{

N2Q2
0

R2P 2
T

(CAα0 ln N + α1) + CAα2
NQ0

RPT

}
(66)

where
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And Cc = CF for quark and Cc = CA for gluon.

N2Q2
0

R2P 2
T

lnN is implied by RG equation

N2Q2
0

R2P 2
T

is a gaussian smearing

B.R. Webber et al.

JHEP 9804:017,1998



Dependence on pT@ CDF

Gluon jet and quark jet dominates in low and high pT region, 
respectively, mainly caused by parton density (PDFs).
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Dependence on different subprocesses



Dependence on collider energy
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