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Abstract. I discuss collinear and infrared divergences in QCD cross sections with massless and
massive final-state particles. I present the two-loop renormalization group evolution and resum-
mation in terms of anomalous dimensions, and I show specific results for a variety of QCD hard-
scattering processes.
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RESUMMATION OF COLLINEAR AND SOFT CORRECTIONS

Soft-gluon corrections arise in scattering cross sectionsfrom incomplete cancellations
of infrared divergences in virtual diagrams and real diagrams with low-energy (soft)
gluons. Atnth order in the perturbative series, these soft correctionsare of the form
[(lnk(s4/M2))/s4]+ with M a hard scale,k ≤ 2n − 1 ands4 the kinematical distance
from threshold. The leading (double) logarithms arise fromcollinear and soft radiation.
Also purely collinear terms(1/M2) lnk(s4/M2) appear in the cross section.

Soft-gluon corrections are dominant near threshold and they can be shown to expo-
nentiate, so these corrections can be resummed. Resummation follows from factorization
properties of the cross section and renormalization group evolution (RGE) [1, 2] (for fur-
ther recent studies see Refs. [3-14]). At next-to-leading-logarithm (NLL) accuracy this
requires one-loop calculations in the eikonal approximation. Recently results have been
derived at next-to-NLL (NNLL), with the completion of two-loop calculations for soft
anomalous dimensions for processes with massless and massive partons in various ap-
proaches [3,6-14]. Approximate NNLO and higher-order cross sections have also been
derived from the expansion of the resummed cross sections.

The cross section factorizes asσ = (∏ψ) HIL SLI (∏J), whereψ are functions for
the incoming partons,J are final-state jet functions,H is the hard-scattering function,
andS is the soft-gluon function describing noncollinear soft-gluon emission [2]. We use
RGE to evolve theS function associated with soft-gluon emission
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whereΓS is the soft anomalous dimension, a matrix in color space and afunction of the
kinematical invariants of the process [2].

Solving the RGE for the soft function and the other functionsin the factorized cross
section, we find the following result for the resummed cross section in Mellin moment



space, withN the moment variable,
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Collinear and soft radiation from the incoming partons is resummed in the exponent
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Purely collinear terms can be derived by replacingzN−1−1
1−z by −zN−1 above.

Collinear and soft radiation from outgoing massless quarksand gluons is resummed
in the second exponent
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The quantitiesA, B, andD have well-known perturbative expansions inαs. The factor-
ization scale,µF , dependence in the third exponent is controlled by parton anomalous
dimensionsγi/i = −Ai ln Ñi + γi. Noncollinear soft gluon emission is controlled by the
process-dependent soft anomalous dimensionΓS.

We determineΓS from the coefficients of ultraviolet poles in dimensionallyregular-
ized eikonal diagrams [2,6,11-15]. We perform the calculations in momentum space and
Feynman gauge. Complete two-loop results have been derivedfor the soft anomalous
dimensions fore+e− → tt̄ [6], tt̄ hadroproduction [13],t-channel [14] ands-channel
[11] single top production,tW− andtH− production [12], and direct photon andW pro-
duction at largeQT . We write the perturbative series for the soft anomalous dimension

ΓS = (αs/π)Γ(1)
S +(αs/π)2Γ(2)

S + · · · and determineΓ(1)
S andΓ(2)

S for these processes.

TWO-LOOP SOFT ANOMALOUS DIMENSIONS

Top-antitop production in hadron colliders

The soft anomalous dimension matrix for the partonic process qq̄ → tt̄ is a 2× 2
matrix [2, 13]

ΓSqq̄ =
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.

At one loop, in a singlet-octet color basis, we find
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whereLβ = [(1+ β 2)/(2β )] ln[(1−β )/(1+ β )] with β =
√

1−4m2/s andm the top
quark mass.

At two loops, we find [13]
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whereK is a two-loop constant,Mβ is a part of the two-loop cusp anomalous dimension
[6], andNβ is a subset of the terms ofMβ .

Similar results have been derived for thegg → tt̄ channel [13].

Single top quark production

We begin with the soft anomalous dimension fort-channel single top production [14].
Here we show results only for the 11 element of the matrix. At one loop
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At two loops [14]
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We continue with the soft anomalous dimension fors-channel single top production
[11], again showing only the 11 matrix element:
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Finally we present the soft anomalous dimension for the associated production of a
top quark with aW− or H−. Relevant two-loop eikonal diagrams are shown in Fig. 1
(there are also additional top-quark self-energy graphs).

The soft anomalous dimension forbg → tW− (or bg → tH−) is [12]
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FIGURE 1. Two-loop eikonal diagrams fortW production.

W -boson and direct photon production at large pT

One-loop results for the soft anomalous dimensions forW (same as for direct photon)
production have been known from [15]. Here we also present new two-loop results.

For the processqg →Wq (or qg → γq) the soft anomalous dimension is
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For the processqq̄ →Wg (or qq̄ → γg) the soft anomalous dimension is
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