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Example: n/K identification in semi-inclusive DIS
50 ® 100 GeV’ SIDIS Kinematics: Current-Jet DJ.:D
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Kinematic coverage in SIDIS is limited by hadron detection and identification.

Momenta are large at forward angles and grow with z, x, and O’

See proposal text for discussion of application to, for instance, TMDs.



Example: e/r 1identification in DIS at low x
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High-O’, low-x electrons have low momenta and require good pion suppression
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DIRC principle

Particle
Solid Track Focusing
S Optics
Radiator
. . . . Detector
* Charged particle traversing radiator with II:;; \\ ~— Surface
refractive index n with v [v/c> 1/n Mirrey
emits Cherenkov photons on cone with Cherenkov Photon
half opening angle cos - = 1/*h(0). Trajectones

* For n>X some photons are always totally internally reflected for ¥ 1 tracks.

 Radiator and light guide: bar made from Synthetic Fused Silica

* Magnitude of Cherenkov angle conserved during internal reflections
(provided optical surfaces are square, parallel, highly polished)

* Photons exit radiator into expansion region,
detected on photon detector array.
(pinhole imaging/camera obscura or focusing optics)

* DIRC is intrinsically a 3-D device, measuring: x, y, and time of Cherenkov photons,
defining JTLdt, opagaion OF €aCh photon.



n/K ID as a function of the 6, resolution
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Improving the 6, resolution

. g hoion lored Correlated term:
O_gnc = ® georrelare tracking detectors, multiple scattering. etc
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BABAR-DIRC Cherenkov angle resolution: 9.6 mrad per photon — 2.4 mrad per track

Limited in BABAR by: Could be improved via:
* size of bar image ~4.1 mrad -----» - focusing optics <——_ o
* size of PMT pixel ~5.5mrad -.--» - smaller pixel size < topics for Rl&D
roposa
* chromaticity (n=n(x)) ~5.4 mrad -----» = better time resolution < bop
9.6 mrad -----» 4-5mrad (?) per photon /
* number of photons 15-50  -—--* - photocathode/SiPM

* DIRC bar thickness can in principle also be increased beyond the 17 mm (19% r.l.) used in Babar

* Excellent 3D imaging (2 spatial + time) essential for pushing performance beyond state-of-the-art




R&D goals

1. Investigate possibility of pushing state-of-the-art performamce

* Extend 3o n/K separation beyond 4 GeV/c, maybe as high as 6 GeV/c

— also improves e/n and K/p separation

2. Demonstrate feasibility of using a DIRC in the EIC detector

* Compact readout “camera” (expansion volume + sensors)

* Operation in high magnetic fields (up to 3 T)

3. Study integration of the DIRC with other detector systems

* Long bars (plates) penetrating endcap?



Primary responsibilities

1. Simulations of DIRC performance and design of EV prototype

* Old Dominon University

2. Lens and EV prototype construction and testing

* GSI Helmholtzzentrum fiir Schwerionenforschung

3. Sensor tests in high magnetic fields

* University of South Carolina and Jefferson Lab

4. Detector integration

* Catholic University of America

Note: The proposal is a collaborative effort and most institutions will contribute to more
than one of the areas above regardless of their primary responsibility



Design choices

1. Focusing

* Proximity focusing (BaBar)

* Mirror on the side opposite of readout (Belle)
* Mirror on the side of the readout (SuperB)

* Lenses (PANDA)

2. Expansion volume and sensors

* Inside detector volume

* Outside of endcap (and iron or equivalent)

3. Radiator bars

* Boxes of narrow bars (BaBar)
* Plates = wide bars (Belle)
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Design strategies

1. Expansion volume inside detector

* Narrow bars of moderate length (4-5 m)
— Reconstruction well understood
— Good azimuthal segmentation - can handle high multiplicity events
* Compact expansion volume important (fused silica)
— Lens focusing primary choice — concept benefits from PANDA R&D
* Sensor challenges
— High magnetic fields (low-noise SiPMs or MCP-PMTs with small pore size?)

— Radiation? (EV in ,,quiet” corner)

2. Expansion volume outside detector endcap and iron

* Long bars — wide plates preferable in order to reduce number of reflections
— Lower tolerances and potentially lower total cost
— Requires new reconstruction methods — synergies with PANDA R&D
— Azimuthal segmentation requirements need to be studied
* Fewer constraints on EVsize and orientation — can be radially large
—  Mirror focusing similar to FDIRC for SuperB?
* Sensors — easier access and moderate magnetic fields (MCP-PMTs?)

* Major impact on endcap detectors — needs to be studied!
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Possible layouts with internal and external EV
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A DIRC-based PID solution for
the central detector can have the
EV placed inside or outside of
the detector.

An internal solution requires a
compact EV

The DIRC bars/plates would be
quite long if the EV was outside.

Need to evaluate the impact of
long bars/plates on endcap design
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R&D strategy — simulations and design

1. Proof of Concept

* Configuration with lens focusing and EV inside detector

* New lenses with high index of refraction have been developed
* Reconstruction package developed (needed for figure of merit)
* Ray tracing (drcprop) simulations show 1 mrad resolution!

* Next steps: lens and EV optimization

2. Design optimiziation for EIC detector

* Both internal (lens) and external (mirror) configurations will be investigated

3. Design and construction of lens and EV for prototype

4. Studies of other configurations

* Bar with mirror on the opposite side of EV (a la Belle) has been studied in drcprop
— Results were not promising and this approach has not been pursued further

* Bar with Babar geometry EV has been implemented in GEANT4
— Intended as a benchmark for GEANT4 simulations of prototype
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Event reconstruction
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* For design purposes the main goal is to establish a figure of merit
 Explicitly reconstruct the single-photon 6, resolution and photon yield

* Currently the algorithm uses a spatial lookup table (generated through
simulation) combined with cuts on the time of propagation

— Can be extended to include time explicitly in lookup table



Benchmark expansion volume geometries

Simulations were
performed for two
benchmark geometries:
box and trapezoid

No matching of the focal
plane and EV image plane
has yet been performed

DIRC Bar and Lens at Bar face x=t 1?_1 mm

Bar Heught: v {mm)

Silica EV
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Benchmark EV (box) geometry
30 cm long, 15 cm high, 1 cm step
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Trapezoid with 30 degree angle
Similar dimensions as for the box




Lenses with high refractive index

DIRC Bar and Lens at Bar face x=t 1?_1 mm

Lenses with air gaps cause
photon losses around 90
degrees.

Novel lenses with high
refractive index have been
designed to address this

So far the focus has been
on photon yield, not single
photon resolution (and
matching of focal plane
with EV geometry)

New triple lens is very
promising. Cylindrical
lenses will also be
investigated (for plates).
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Achieved 6, resolution

drcprop simulation with 2c cuts on time of propagation
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* Resolution per track includes photon number, focusing, pixel size, and chromaticity
* Resolution (o) at forward angles is better than 1 mrad per track (i.e., for all photons)

* New lenses with high refractive index improve performance, especially around 90°
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Procurement: DAQ electronics (@GSI)
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PADIWA interface card for
connecting the procured MaPMTs
(via Hamamatsu E11906 sockets) to
the TRBv3 DAQ card (right).
Procurement in progress

TRBv3 DAQ card with AddOns
Procurement complete
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Procurement: PMTs

Katod single-anode MCP-PMTs
Two ordered, with 3 and 5 ym pore
size, respectively.

Tests in high magnetic fields will
show if how far one could go with

this type of sensor, which has a good Hamamatsu R11265-103-64 MaPMTs
single-photon capability 256 channels (4 MaPMTs) procured.
Photo taken in transit at JLab 19



Procurement: SiPMs

5153325 rh |[gn ;:"‘[! :

glRis rz:am_u‘:uu_.d"

J15 A JH\ i
16 channel readout
board (with preamp)

Hamamatsu S11064-050P(X) array
16 channels - 3x3 mm?
50 tm microcells
400 microcells / mm?

To be used for high B-field tests at JLab
20



High-B sensor test facility — dark box

1st version of dark box
e Use non-magnetic materials
> % (delrin, aluminum, brass)

Hamama’rsy 511064-050P(X) Short side fits within 22 cm magnet bore
SiPM array

Fiber optic input
for pulsed blue LED

TR

- Preamp . SiPM bias

i . S
N
i i w5 — "'"-f
o D = -

S
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High-B sensor test facility — light diffuser

Need optical diffuser to
uniformly illuminate
photodetector
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High-B sensor test facility - magnet

Superconducting dual-solenoid

Max. nominal field at center: 4.7 T
Adjustable nominal field S
Bore diameter: 0.23 cm Gompensaton

Main coll cail
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PANDA: EV prototype tests at CERN

Simple plano-convex focusing lens attached to bar

* Tests carried out in 2011 and 2012

— Pictures are from 2011 run

* 2012 test were very comprehensive
— Data analysis in progress

—  Will help to guide EIC prototype
design

—HPIIR TR
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General layout of EIC prototype

Particle

The EIC prototype will an infrastructure and layout generally similar to
those that were used for the PANDA beam tests at CERN in 2012

— It will, however, feature new lenses, sensors, and EV geometry

— Next beam time at CERN will not be available until year 4.
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Funding request

Students $8,300 $13,764 $13,764 $13,784 $49,592

Travel $11,440 $13,606 $19,036 $14,936 $59,018

Matching funds are available for the ODU postdoc, H. Seraydaryan, hired in November 2011.
Travel in Year 3 mostly driven by high B-field test facility. Tables include overhead.

Catholic University of America (CUA) $9,800 $8,300 $8,300 $8,300 $34,700

JLab and GSI (through MoU) $51,910 $70,094 $38,854 $42,794 $203,652

See sections 5 and 6 of the proposal for a detailed breakdown
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Summary

Very promising simulation results

* New lenses with high refractive index developed — improved photon yield

* Proof of concept for high-performance DIRC

— Resolutions better than 1 mrad obtained at forward angles

* Results of the R&D will be presented at conferences this fall
* Simulations of mirror-based optics with external EV will begin in the fall

Hardware projects on track

* Procurement of first round of sensors and DAQ components for GSI setup had been
completed and second round is under way

* Components for the high B-field test facility are being procured and prepared

— preparations for installation of magnet and infrastructure are ongoing

Adjusted funding profile

* Due to the success of our simulations, development of new lenses, and unavailability
of test beams until Year 4, we ask to extend the time line of the proposal, but with a

lower annual cost.
27



Backup
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Momentum coverage and 6, resolution
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« Extending n/K separation from 4 to 6 GeV/c requires o, ~ 1 mrad (vs 2.4 in BaBar — a 58% reduction).
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DIRC simulations and EV design

Ray-tracing software (DRCPROP)
will be used for parameter studies
and the initial design of the EV

Detailed studies of the selected EV
design will be performed using
GEANT4

This can then be implemented into

the GEANT4 (GEMC) framework
used for the EIC detector

— Integration studies

First tests of implementing a DIRC into GEANT4
at ODU/JLab using the BaBar geometry
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Focusing-mirror optics implemented in drcprop

' .. s SuperB EV in drcprop Y/

Old wedge New wedge FBLOCK

* SuperB mirror optics have been implemented in drcprop

*  Will be modified to fit EIC requirements

31



Simulations using lenses with air gap
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Photon losses due to internal reflection for track angles around 90 degrees
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Event reconstruction I

Calculate unbiased likelihood for signals to originate
from e/ 9 A/p track or from background:
Likelihood: Pdf( ) & Pdf(st) & Pdf(Ny

2
Pdf = Probability distribution function
Example: comparison of real <
event to simulated response of . .9 A
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PANDA: results from 2011 tests at CERN

Expected hit pattern for 1.7 GeV/c pions
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High-B sensor test facility — the test box

(Wood) Lid
with inner
sleeve for

Light tight fit

Sensor Test Box - Side (Back) View Sensor Test Box - Top View
(Side Fittings nat shown) Optical Optical Sensor

Imner Surfaces
inted diffuse
ite
Optical
breadboard +
Nllil'll'l.__...-—""'".".‘:] C L. & i Firﬁrgsfn;r:puwu- 8 \, Optomechanics "
Bail Mount or data lines for rotation and

Figures, courtesy of C. Zorn

* Box features

* Suitable for testing

Light tight
Non-magnetic — SiPMs
Cool — MCP-PMTs

Temperature controlled
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