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Abstract:

We propose to develop a concept for a backward (electron-going direction) tracking station
near the collision vertex. We focus on detection of the scattered electron, as the precision of
this measurement defines the kinematics of the collision. Disks of thinned-silicon sensors
(MAPS) detectors will be laid out, including conceptual design for the arrangement of
services, including cooling, power, and readout. We will perform simulations to specify
layout and sensors optimized for high priority early physics measurements, and eventually
determine whether a copy of the same tracker should be used in the hadron-going
direction. We will also perform R&D on low-mass cabling utilizing aluminum traces.
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EIC Physics - RNC

EIC science case - arXiv:1212.1701
arXiv:1409.1633

LBNL/RNC has contributed to both,
- Spin physics case,
- eSTAR detector simulations,

Gluon-dense matter is the common theme
of interests in RNC.




EIC Physics - RNC

Interest in gluon-dense matter:
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implies a need for high-Vs,
observables F2(x,Q2), FL(x,Q?2), g1(x,Q?2) at low-x

+ diffraction, dijets, heavy flavor, ...s



EIC Physics - RNC
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Interest in gluon-dense matter:
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necessitates instrumentation at backward angles
w.r.t. the hadron beam (HERA convention)



EIC - DIS particle distributions

Scattered electron: courtesy BNL 1.
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Produced pion (Kaon, proton similar):
Cuts: Q?>1 GeV, 0.01¢y<0.95, z>0.1
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drive acceptance, PID and other requirements.



EIC - lepton PID
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photon rejection - same tracking and EMCal acceptance,
hadron rejection - charge and E/p.
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eRHIC - Model Detector (BeAST)

-

GEM trackers 3T solenoid coils

ons silicon trackers

nadf

E.C. Aschenauer, A. Kiseley, et al.

MAPS-based Si; minimize bremsstrahlung, resolutions.

see e.g. talk by A. Kiselev at Temple tracking workshop.



eRHIC - MAPS disks

ALICE MFT
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Figure 8.8: MFT half-disk layout (exploded view).

Clear need for R&D:
- develop a realistic disk configuration,
- sensor R&D, e.g. integration time, pixel size,

- suitability for other EIC detector design concepts,
and that’s just a start. Actual mechanics, read-out, ...



RNC - Selected Instrumentation



RNC - STAR PXL Detector

First large scale MAPS based vertex detector at a collider experiment.

PXL inserted into TAR, cabled and
working in 24 hours

Detector-half

« 356 M pixels on ~0.16 m2 of Silicon

e 20 um x 20 um pixels.

« Low radiation length with X/X, of 0.4% on inner
ladders.

« Air cooled.

» Full detector replacement in 12 hours.
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RNC - STAR PXL Detector

First large scale MAPS based vertex detector at a collider experiment.

PXL inserted into STAR, cabled and
working in 24 hours

Detector-half

RNC scope
Full simulation and optimization.

Full system design including R&D into MAPS sensors with IPHC
Strasbourg.
Full construction including RDO electronics, firmware, software,
commissioning and analysis.
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RNC - STAR PXL Detector

First large scale MAPS based vertex detector at a collider experiment.

STAR Preliminary
Au+Au Vs = 200 GeV
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Full simulation and optimization.

PXL inserted into STAR, cabled and
working in 24 hours

Full system design including R&D into MAPS sensors with IPHC

Strasbourg.

Full construction including RDO electronics, firmware, software,
commissioning and analysis.

13



RNC - STAR PXL R&D

Comprehensive R&D effort, incl. sensor generation and RDO

>10 year collaboration with IPHC — PICSEL group

3 generation program with highly coupled sensor and readout development

Complementary detector readout

analo digital digital
Pixel Signafi ADC | —=—=—[ CDS | signals Data readout
Sensors CDS —ralog™ Disc. sparsification to DAQ

1 MimoSTAR sensors
4 ms integration time

2 Phase-1 sensors 640 us integration time

PXL final sensors (Ultimate) < 200 ys integration time

Sensor and RDO Development Path >
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RNC - ALICE ITS Upgrade

Outer Layers

7 layers

10 m”2 of silicon
Installationin early 2019
X/X, ~ 0.3% (inner layers)
X/X, ~ 0.8% (outer layers)

i Middle Layers

Anticipated use of CERN-developed
MAPS sensors, ALPIDE:

P N I Dimensions: 15mm x 30mm
Beam pipe o Pixel pitch: 28um x 28um
Integration time: 8-10us

Power consumption: 39mW/cm2

TDR: http://iopscience.iop.org/0954-3899/41/8/087002/
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RNC - ALICE ITS Upgrade

RNC scope:
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RNC - This EIC R&D proposal



RNC EIC R&D proposal

® Simulations and calculations to quantitively address:
- disk configuration(s),
- services,
- sensor specifications and development needs, if any,
sampling rate, pixel size

Product: high-level sensor specifications and development needs
conceptual design of a forward tracker for two or more field configurations

® lterative development of low-mass cables
- ultimate goal is a new production partner for aluminum conductor cables,
besides CERN and Institute at Kharkov Ukraine,
- contact with and build on prior work with the Hughes Circuits Inc,

Product: uncertain - a ‘must do’ for the community as a whole.
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RNC EIC R&D funding request

Request:

0.50 postdoc FTE; to work on R&D for sensor, services layout, and low-mass cable
0.25 postdoc FTE; to work on simulations

$20K for cable prototyping

5 trips at $1200/trip; to enable postdoc(s) to attend workshops and learn the
BNL-developed EIC simulation framework.

Cost, including LBNL overheads:
$126,850 0.75 postdoc (for 1 year)
$ 25,844 M&S

$ 7,803 Travel

$160,497 Total
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To define the angles, energies:
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Relevant invariants:
q=¢e— e/ Q2 — —(e — e/)2 Square of (4-)momentum transfer,
Q2 ~resolution
L — — Bjorken-x, ~parton mom. fraction
Yys
Yy = (q.p)/(e.p) Fractional energy transfer
Resolutions (electron-method):
0Q% OF! 7
52 = ¢ @ 0. tan 5‘3 gets large near the beam region
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e e p

X, Q2 can also be reconstructed from the “current jet”, hybrids - c.f. arXiv:hep-ex/9412004



anticipate O(100kHz) rates
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Simulations - radiation length

= {PYTHIA 20x250 GeV NO bremsstrahlung} -> {GEANT} -> {Kalman filter track fit}
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Simulations - resolution
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Figure 4-8: Left panel: expected momentum resolution of the baseline eRHIC detector as a function of pseu-
dorapidity. Right panel: forward tracker momentum resolution at n = 3 vs secondary hadron momentum for
various values of MAPS forward tracker pixel size.

eRHIC design study



HFT - radiation thickness

Radiation length in low mass area

Si 50um (0.0529%)
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