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Abstract

The production of W or Z bosons in association with two jets is an important

background to the Higgs boson search in vector-boson fusion at the LHC. The purely

electroweak component of this background is dominated by vector-boson fusion, which

exhibits kinematic distributions very similar to the Higgs boson signal. We consider

the next-to-leading order QCD corrections to the electroweak production of ℓνℓjj and

ℓ+ℓ−jj events at the LHC, within typical vector-boson fusion cuts. We show that

the QCD corrections are modest, increasing the total cross sections by about 10%.

Remaining scale uncertainties are below 2%. A fully-flexible next-to-leading order

partonic Monte Carlo program allows to demonstrate these features for cross sections

within typical vector-boson-fusion acceptance cuts. Modest corrections are also found

for distributions.
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1 Introduction

Vector-boson fusion (VBF) processes have emerged as a particularly interesting class of

scattering events from which one hopes to gain insight into the dynamics of electroweak

symmetry breaking. The most prominent example is Higgs boson production via VBF, that

is, the process qq→ qqH , which can be viewed as quark scattering via t-channel exchange of

a weak boson, with the Higgs boson radiated off the W or Z propagator. Alternatively, one

may view this process as two weak bosons fusing to form the Higgs boson. The kinematic

characteristics of this process are very distinctive: two jets, in the forward and backward

region of rapidity, with the Higgs boson decay products in the central region of the detector.

This characteristic signature greatly helps to distinguish these Hjj events from backgrounds.

Higgs boson production via VBF has been studied intensively as a tool for Higgs boson

discovery [1, 2] and the measurement of Higgs boson couplings [3] in pp collisions at the

CERN Large Hadron Collider (LHC).

Analogous to Higgs boson production via VBF, the electroweak production of a W or

Z plus two jets, with the requirement that the weak boson is centrally produced and that

the two jets are well separated in rapidity, will proceed with sizable cross section at the

LHC1. The decay leptons in W → ℓνℓ and Z→ ℓ+ℓ− lead to the final states ℓνℓjj and ℓ+ℓ−jj

(ℓ = e, µ, τ). These processes have already been considered in the literature at leading order

(LO). To name but a few examples, they have been studied in the investigation of rapidity

gaps at hadron colliders [6, 7, 8], as a probe of anomalous triple-gauge-boson couplings [9]

or as a background to Higgs boson searches in VBF [10, 11, 12]. In this last case, the

ℓνℓjj final state with an unidentified charged lepton, or νℓν̄ℓjj events from Z→νℓν̄ℓ decay,

form a background to invisible Higgs boson decay (see e.g. Ref. [12]). τ+τ−jj events are a

background to the decay H→ τ+τ− [10], and also to H→W+W− when the W ’s and the τ ’s

decay leptonically [11]. In these examples, off-shell corrections to Z→ τ+τ− decay need to

be included, since a Higgs boson mass in the range 114 GeV < mH < 200 GeV, well above

the Z peak, is favored by electroweak data [13].

While a LO analysis is perfectly adequate for exploratory investigation, precision mea-

surements at the LHC require comparison with cross-section predictions which include

higher-order QCD corrections. A poignant example is the extraction of Higgs boson cou-

plings, where expected accuracies of the order of 10%, or even better [3], clearly require

knowledge of the next-to-leading order (NLO) QCD corrections. In addition, one would like

to exploit W and Z production, in VBF configurations, as calibration processes for Higgs

boson production via VBF, namely as a tool to understand the tagging of forward jets or

1Another source of Wjj or Zjj events are QCD processes at order α2

sα, sometimes called QCD V jj

production. Within typical VBF cuts, cross sections for these QCD processes are only somewhat larger than

those for electroweak production [4]. One thus needs to calculate NLO QCD corrections for both sources

independently, and as a function of phase space. For the QCD processes this was done in Ref. [5].
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the distribution and veto of additional central jets in VBF (see e.g. Ref. [7, 8]). In fact, these

processes share the same color structure: two colored quarks are scattered via the exchange

of a colorless boson in the t-channel. The pattern of soft gluon radiation is then the same.

Understanding the gap-survival probability in the known case of W and Z production can

give insight on the gap survival for the case of Higgs boson production. The precision needed

for Higgs boson studies and for the understanding of radiation patterns then requires the

knowledge of NLO QCD corrections for Wjj and Zjj production as well.

The NLO QCD corrections to the total Hjj cross section from VBF has been known for

many years [14]. In a recent paper [15], we presented the calculation of these corrections in

the form of a fully-flexible parton-level Monte Carlo program which allows the determination

of NLO corrections to arbitrary (infrared-safe) distributions. Here, we extend this work and

describe the calculation and first results for such corrections to Wjj and Zjj production in

VBF configurations. To be precise, since the decaying weak bosons are spin-one particles,

in order to retain all the possible angular correlations between the final state particles,

we consider the electroweak processes pp→ ℓ±νℓjjX and pp→ ℓ+ℓ−jjX at NLO. At LO,

Feynman graphs for one such process, uc→ dcW+,W+ → ℓ+νℓ, are shown in Fig. 1. Using

the terminology introduced in [16], we consider bremsstrahlung (a, b, c), fusion (d) and

multiperipheral (e, f) diagrams. We neglect diagrams corresponding to conversion, abelian

and non-abelian annihilation, since these qq̄ annihilation contributions are negligible when

we impose VBF cuts, as explained in detail in Sec. 2.1.

In the following, in order to use a shorthand notation, we will call processes such as the

one depicted in Fig. 1 “EW V jj production”, or VBF production of W/Z plus two jets, since

we consider these processes with the kinematic cuts typical for the selection of VBF (see

Sec. 4). It should be understood that, in spite of this notation, multiperipheral diagrams

like (e) and (f) are included, even though they cannot be represented as the production of a

weak boson, followed by its decay into two leptons.

The structure of the paper is as follows: in Sec. 2, we outline the calculation of the tree-

level diagrams, of real-emission contributions and of the virtual corrections. We dedicate

Sec. 2.3 to the discussion of the virtual contributions, with some of the analytical details

relegated to Appendix A. A list of checks which we have performed on our calculation

concludes Sec. 2. Additional features of our Monte Carlo program, like the gauge invariant

handling of finite W and Z widths, the inclusion of anomalous WWγ and WWZ couplings,

the approximations with regard to crossed diagrams in the presence of identical quark flavors,

the singularities for incoming photons and the choice of parameters, will be discussed in

Sec. 3. We then use this Monte Carlo program to present first results for EW V jj production

at the LHC. Of particular concern is the scale dependence of the NLO results, which provides

an estimate for the residual theoretical error of our cross-section calculations. We discuss

the scale dependence and the size of the radiative corrections for various distributions in

Sec. 4. Conclusions are given in Sec. 5.
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Figure 1: Feynman graphs contributing to the process uc→ dcℓ+νℓ at tree level. For

the generic VBF process discussed in this paper, seven Feynman-graph topologies

contribute at tree level: the six topologies shown plus an additional bremsstrahlung

graph, with the vector boson emitted off the final-state charm quark [mirror image

of graph (b)].

2 Elements of the calculation

The structure of the three processes under consideration, pp→ ℓ+νℓjjX, pp→ ℓ−ν̄ℓjjX

and pp→ ℓ+ℓ−jjX, is very similar. A discussion of any single one of them is sufficient

to clarify our procedures for all, and we use W+ production, i.e., the calculation of the

pp→ ℓ+νℓjjX cross section, for this purpose. Mutatis mutandis, all the considerations apply

to the other processes too.
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2.1 Approximations and general framework

At tree level, the topological structure of the generic subprocesses contributing to EW Wjj

production is depicted in Fig. 1. Two additional classes of diagrams appear in case of

identical quark flavors on two of the fermion lines:

- diagrams where both the two virtual vector bosons are time-like. They correspond

to diagrams called conversion, abelian and non-abelian annihilation in Ref. [16], and

contain vector-boson pair production with subsequent decay of one of the weak bosons

to a pair of jets. Pars pro toto, we call this class vector-boson pair production in the

following.

- diagrams obtained by interchange of identical initial- or final-state (anti)quarks, such

as in the uu→ duℓ+νℓ or du→ ddℓ+νℓ subprocesses.

These additional diagrams are obtained from the ones shown in Fig. 1 by crossing. In our

calculation, we have neglected contributions from vector-boson pair production completely.

In addition, any interference effects of the second class with the graphs of Fig. 1 are ne-

glected. This is justified because, in the phase-space region where VBF can be observed

experimentally, with widely-separated quark jets of very large invariant mass, the neglected

terms are strongly suppressed by large momentum transfer in one or more weak-boson pro-

pagators. Color suppression further reduces any interference terms. We have checked with

MadEvent [17] that, at LO, the diagrams that we have not considered and interference effects

contribute less than 0.3% to our final results in e.g. Fig. 4. Since we expect QCD corrections

to the neglected terms to be modest, the above approximations are fully justified within the

accuracy of our NLO calculation.

Fermion masses are set to zero throughout, because observation of either leptons or (light)

quarks in a hadron-collider environment requires large transverse momenta and hence sizable

scattering angles and relativistic energies. For the t-channel processes which we include, we

have used a diagonal form (equal to the identity matrix) for the Cabibbo-Kobayashi-Maskawa

matrix, VCKM . This approximation is not a limitation of our calculation. As long as no final-

state quark flavor is tagged (no c tagging is done, for example), the sum over all flavors,

using the exact VCKM , is equivalent to our results, due to the unitarity of the VCKM matrix.

2.2 Tree-level diagrams and real corrections

For the Wjj Born amplitude, we need to add the contributions from the 10 Feynman graphs

shown in Fig. 1 (Z and γ propagators counted as different diagrams), and sum cross sections

of all subprocesses producing W+ plus two jets. The same is true for W− production. For
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Figure 2: Examples of Feynman amplitudes with an initial gluon. Graphs like (a)

and (b), with the gluon coupled to the initial quark line, correspond to vector-boson

pair production and are eliminated. The two gauge-invariant subsets of graphs

like (c) and (d), with the gluon coupled to the final-state quark pair, contain all

g→qq̄ splitting contributions and are included in our calculation.

the case of Zjj production, amplitudes which correspond to neutral-current exchange (no

change of quark flavors) receive contributions from 24 Feynman graphs at tree level. To

obtain the real-emission diagrams, with a final-state gluon, one needs to attach the gluon

to the quark lines in all possible ways. For the diagrams in Fig. 1, this gives rise to 45

real-emission graphs. 112 different Feynman graphs contribute to real-emission corrections

to Zjj production via neutral-current exchange.

The contributions with an initial-state gluon are obtained by crossing the previous dia-

grams, promoting the final-state gluon as incoming parton, and an initial-state (anti)quark

as final-state particle. We again remove all diagrams where two time-like, final-state vector

bosons appear such as gu→ ℓ+νℓdZ
∗, with Z∗→ cc̄. Such diagrams, for consistency, must

be removed since we have not considered the corresponding Born contributions. Figure 2

clarifies this issue: we drop all initial-gluon contributions in which the gluon couples to the

fermion line of the initial quark or antiquark. In fact, these diagrams are strongly suppressed

when VBF cuts (see Sec. 4) are applied to the final-state jets.

Our Monte Carlo program computes all amplitudes numerically, using the formalism of

Ref. [18]. The Born amplitudes for W and Z production are taken from Ref. [6]. The

6



real-emission amplitudes for Z production were first given in Ref. [7]. The corresponding

amplitudes for W production were partially programed at the time. We have finalized and

tested them for the present application.

2.3 Virtual corrections

At NLO, we have to deal with soft and collinear singularities in the virtual and real-emission

contributions. Our calculation uses the subtraction method of Catani and Seymour [19] to

cancel the soft and collinear divergences between virtual and real-emission diagrams. Since

these divergences only depend on the color structure of the external partons, the subtraction

terms encountered for EW V jj production are identical in form to those found for Higgs

boson production in VBF. Thus, we can use the results described in Ref. [15] for the case

at hand. The main difference is that the finite parts of the virtual corrections are more

complicated than for Hjj production (where only vertex corrections were present).

The QCD corrections to EW V jj production appear as two gauge-invariant subsets,

corresponding to corrections to the upper and lower fermion lines in Fig. 1. Due to the

color singlet nature of the exchanged electroweak bosons, any interference terms between

subamplitudes with gluons attached to both the upper and the lower quark lines vanish

identically at order αs. Hence, it is sufficient to consider radiative corrections to a single

quark line only, which we here take as the upper one. Corrections to the lower fermion line

are an exact copy.

In computing the virtual corrections, we have used the dimensional reduction scheme [20]:

we have performed the Passarino-Veltman reduction of the tensor integrals in d = 4 − 2ǫ

dimensions, while the algebra of the Dirac gamma matrices, of the external momenta and of

the polarization vectors has been performed in d = 4 dimensions.

We split the virtual corrections into two classes: the virtual corrections along a quark

line with only one weak boson attached and the virtual corrections along a quark line with

two weak bosons attached.

I. The virtual NLO QCD contribution to any tree level Feynman subamplitude M(i)
B

which has a single electroweak boson V (of momentum q) attached to the upper fermion

line,

q(k1)→ q(k2) + V (q) , (2.1)

appears in the form of a vertex correction, which is factorisable in terms of the original Born

subamplitude

M(i)
V = M(i)

B

αs(µR)

4π
CF

(

4πµ2
R

Q2

)ǫ

Γ(1 + ǫ)
[

− 2

ǫ2
− 3

ǫ
+ cvirt + O (ǫ)

]

. (2.2)
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Figure 3: Virtual corrections for a fermion line with two attached electroweak

bosons, V1(q1) and V2(q2). The finite part of the sum of these graphs defines the

reduced amplitude M̃τ (q1, q2) of Eq. (2.5).

Here µR is the renormalization scale, and the boson virtuality Q2 = −(k1−k2)
2 = −q2 is the

only relevant scale in the process, since the quarks are assumed to be massless, k2
1 = k2

2 = 0.

In dimensional reduction, the finite contribution is given by cvirt = π2/3−7 (cvirt = π2/3−8

in conventional dimensional regularization).

II. The second class of diagrams are the virtual QCD corrections to the Feynman graphs

where two electroweak bosons V1 and V2 (of outgoing momenta q1 and q2) are attached to

the same fermion line (see, for example, the upper quark line in Fig. 1 (a, b)). It suffices

to consider one of the two possible permutations of V1 and V2, as depicted in Fig. 3. The

kinematics is given by

q(k1)→ q(k2) + V1(q1) + V2(q2) , (2.3)

where k2
1 = k2

2 = 0 and momentum conservation reads k1 = k2+q1+q2. In the following, it is

convenient to use the Mandelstam variables for a 2→ 2 process which we take as qq̄→ V1V2.

We then define

s = (k1−k2)
2 = (q1+q2)

2 , t = (k1−q1)2 = (k2+q2)
2 , u = (k1−q2)2 = (k2+q1)

2 . (2.4)

In order to use the same notation as in Eq. (2.2), we define Q2 = 2k1 · k2 ≡ −s.

The two electroweak bosons are always virtual in our calculation, i.e., the effective polar-

ization vectors ǫ1(q1) and ǫ2(q2) actually correspond to fermion currents (the charm-quark

current and the leptonic-decay currents in the Feynman graphs of Fig. 1 (a, b)). Since
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fermion masses are neglected, current conservation implies transversity of the effective po-

larization vectors: ǫ1 · q1 = ǫ2 · q2 = 0. The expressions that we give in Appendix A exploit

this relationship. Our numerical code permits to switch on the missing ǫ1 · q1 and ǫ2 · q2
terms, allowing us to test gauge invariance. Due to the trivial color structure of the corre-

sponding tree-level diagram, the divergent part (soft and collinear singularities) of the sum

of the four diagrams in Fig. 3 is a multiple of this Born subamplitude, just like for the vertex

corrections,

M(i)
boxline = M(i)

B

αs(µR)

4π
CF

(

4πµ2
R

Q2

)ǫ

Γ(1 + ǫ)
[

− 2

ǫ2
− 3

ǫ
+ cvirt

]

+
αs(µR)

4π
CFM̃τ (q1, q2)(−e2)gV1f1

τ gV2f2

τ + O(ǫ) . (2.5)

Here τ denotes the quark chirality and the electroweak couplings gV f
τ follow the notation of

Ref. [18], with, e.g., gγf
± = Qf , the fermion electric charge in units of |e|, gWf

− = 1/(
√

2 sin θW )

and gZf
− = (T3f −Qf sin2 θW )/(sin θW cos θW ), where θW is the weak mixing angle and T3f is

the third component of the isospin of the (left-handed) fermions.

A finite contribution of the virtual diagrams, which is proportional to the Born amplitude

(the cvirt term), is pulled out in correspondence with Eq. (2.2). The remaining non-universal

term, M̃τ(q1, q2), is also finite and can be expressed in terms of the finite parts of the

Passarino-Veltman B0, C0 and Dij functions, which we denote as B̃0, C̃0 and D̃ij . Analyt-

ical expressions for these functions, along with the expression for M̃τ (q1, q2), are given in

Appendix A.

An equivalent form for Eq. (2.5) has been derived where all the D̃ij have been reduced

to B̃0, C̃0 and D̃0 functions. We have checked numerically that the two expressions agree

within the numerical precision of the two FORTRAN codes.

The factorization of the divergent contributions to the virtual subamplitudes, as multiples

of M(i)
B , implies that the overall infrared and collinear divergence multiplies the complete

Born amplitude (the sum of the Feynman graphs of Fig. 1). We can summarize this result for

the virtual corrections to the upper fermion line by writing the complete virtual amplitude

MV as

MV = MB
αs(µR)

4π
CF

(

4πµ2
R

Q2

)ǫ

Γ(1 + ǫ)
[

− 2

ǫ2
− 3

ǫ
+ cvirt

]

+
αs(µR)

4π
CF (−e2)

[

M̃τ (q1, q2)g
V1f1

τ gV2f2

τ + M̃τ(q2, q1)g
V2f1

τ gV1f2

τ

]

+ O(ǫ)

= MB
αs(µR)

4π
CF

(

4πµ2
R

Q2

)ǫ

Γ(1 + ǫ)
[

− 2

ǫ2
− 3

ǫ
+ cvirt

]

+ M̃V , (2.6)

where M̃V is finite. The interference contribution in the cross-section calculation is then
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given by

2 Re [MV M∗

B] = |MB|2
αs(µR)

2π
CF

(

4πµ2
R

Q2

)ǫ

Γ(1 + ǫ)
[

− 2

ǫ2
− 3

ǫ
+ cvirt

]

+ 2 Re
[

M̃V M∗

B

]

.

(2.7)

This expression replaces the analogous result for the NLO corrections to qq→qqH , Eq. (2.11)

in Ref. [15]. The divergent piece appears as the same multiple of the Born amplitude squared

as in the qq→qqH cross section. It cancels explicitly against the phase-space integral of the

dipole terms (see Ref. [19] and Eq. (2.10) of Ref. [15])

〈I(ǫ)〉 = |MB|2
αs(µR)

2π
CF

(

4πµ2
R

Q2

)ǫ

Γ(1 + ǫ)
[

2

ǫ2
+

3

ǫ
+ 9 − 4

3
π2
]

, (2.8)

which absorbs the real-emission singularities. After this cancellation, all remaining integrals

are finite and can, hence, be evaluated in d = 4 dimensions. This means that the values of

MB and M̃V need to be computed in 4 dimensions only and we use the amplitude techniques

of Ref. [18] to obtain them numerically.

2.4 Checks

We have verified, both analytically and numerically, the gauge invariance of Eq. (2.6): once

the extra ǫ1 · q1 and ǫ2 · q2 terms have been re-inserted in this expression, the individual

finite subamplitudes M̃τ (qi, qj) vanish upon the replacements ǫ1 → q1 or ǫ2 → q2. This is a

strong check of the tensor reduction and manipulation of the virtual contributions depicted

in Fig. 3.

We have taken the Born amplitudes for W and Z production from Ref. [6] and use the

real-emission amplitudes of Ref. [7] for Z production. In addition, the Zjj results at the

Born level were successfully checked with COMPHEP code [21]. For W production, the real-

emission amplitudes were obtained by modifying the previously tested Zjjj amplitudes [7].

We have generated equivalent amplitudes with MadGraph [17], checking their consistency

numerically.

For the W+ case, we have built two totally-independent codes. This has allowed us to

check the overall structure of the dipole-formalism terms (common to all the vector-boson

fusion processes), and to compare tree-level, real-emission and virtual amplitudes. The two

codes agree within the numerical precision of the two FORTRAN programs for the total

cross sections and for final-state kinematic distributions.
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3 The parton-level Monte Carlo

The cross-section contributions discussed above have been implemented in a parton-level

Monte Carlo program for ℓ+νℓjj, ℓ
−ν̄ℓjj and ℓ+ℓ−jj production at NLO in QCD, which is

very similar to the program for Hjj production by weak-boson fusion described in Ref. [15].

As in our previous work, the tree-level and the finite parts of the virtual amplitudes are

calculated numerically, using the helicity-amplitude formalism of Ref. [18]. The Monte Carlo

integration is performed with a modified version of VEGAS [22]. While many aspects of our

present calculation are completely analogous to those described in Ref. [15], several new

problems appear for the vector-boson production processes which require explanation.

In order to deal with W/Z boson decay

W/Z(pℓ1 + pℓ2)→ ℓ1(pℓ1) + ℓ2(pℓ2) , (3.1)

we have to introduce a finite W/Z width, ΓV , in the resonant poles of the s-channel weak-

boson propagators. However, in the presence of non-resonant graphs, like those of Figs. 1(e)

and (f), this introduces changes in a subclass of Feynman graphs only, which leads to a

violation of electroweak gauge invariance, which is guaranteed for the zero-width amplitudes.

Such non-gauge-invariant finite-width effects can lead to huge unphysical enhancements at

very small photon virtuality and should be avoided [23]. For the case at hand, transverse-

momentum cuts on the two final-state tagging jets (see Sec. 4) largely eliminate the dangerous

phase-space regions with low-virtuality gauge bosons. Nevertheless, a careful handling of the

finite-width effects is called for.

We have accomplished this using two different schemes.

I. In the overall-factor scheme [24], one multiplies all the diagrams shown in Fig. 1, and all

virtual and real-emission contributions as well, by an overall factor

(pℓ1 + pℓ2)
2 −m2

V

(pℓ1 + pℓ2)
2 −m2

V + imV ΓV

, (3.2)

where ΓV has been assumed to be constant. This way, close to resonance [(pℓ1 +pℓ2)
2 ∼ m2

V ],

where the sum of the diagrams is dominated by the vector-boson propagator, we recover the

result of the resonance approximation. Away from resonance, and, thus, in a subdominant

phase-space region, the error that we make, by multiplying all the diagrams by the factor in

Eq. (3.2), is of the order of ΓV /mV ≈ 2.7%, for both Z and W boson production.

The advantage of this scheme is that it preserves full SU(2) × U(1) gauge invariance,

since the gauge-invariant set of zero-width diagrams is multiplied by an overall factor.

II. In the complex-mass scheme [25], one globally replaces m2
V → m2

V − imV ΓV , also in

the definition of the weak mixing angle, sin2 θW = 1 − m2
W/m

2
Z . We have implemented a
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modified complex-mass scheme where we replace m2
V → m2

V −imV ΓV in the weak-boson pro-

pagators appearing in Fig. 1, but we keep a real value for sin2 θW . With this prescription, the

electromagnetic Ward identity relating the tree-level triple-gauge-boson vertex, −ieΓαβµ
WWγ,

and the inverse W propagator, (DW )−1
αβ(q), is preserved [26]

(q1 − q2)µΓαβµ
WWγ = i(DW )−1

αβ(q1) − i(DW )−1
αβ(q2) . (3.3)

This relation removes potential problems with small q2 photon propagators, where gauge-

invariance-violating terms, proportional to ΓW/mW , may be enhanced by factors E2
T/q

2,

where the hard scale ET is set by typical transverse momenta of the process. The cor-

responding enhancement for Z-boson propagators is of order E2
T/(|q2| + m2

Z) and, hence,

small for the energies available at the LHC. Also, we note that the imaginary part of

sin2 θW = 1 − (m2
W − imW ΓW )/(m2

Z − imZΓZ), in the full complex-mass scheme, is 200

times smaller than the real part and hence well below the naive expectation ΓV /mV ≈ 2.7%

for the size of finite-width corrections.

We have used the two different schemes to compute total cross sections with VBF cuts

and find agreement at the level of the 0.5% or better. This ambiguity, thus, represents a

minor contribution to higher-order electroweak corrections.

Inspection of the Feynman graphs of Fig. 1 shows that the non-abelian triple-gauge-boson

vertices (TGV) enter via the WWZ and WWγ couplings in diagrams like Fig. 1 (d). These

graphs receive QCD vertex corrections only and, therefore, factorize according to Eq. (2.2)

in terms of the tree-level TGV graphs, independent of the form of the TGV. In particular,

the presence of anomalous WWZ or WWγ couplings can easily be taken into account by a

simple modification of the Born amplitude. Our program supports anomalous couplings κγ,

κZ , λγ, λZ etc. [27] and thus allows to extend the analysis of anomalous-coupling effects in

vector-boson fusion processes [9] to NLO QCD accuracy.

The requirement of two observable jets, of finite transverse momentum (see Sec. 4), is

sufficient to render the LO cross section for EW Wjj and Zjj events finite. At NLO, initial-

state collinear singularities appear. For g→qq̄ and q→qg splitting, these are properly taken

into account via the renormalization of quark and gluon distribution functions. An additional

collinear divergence exists, however, because of the presence of t-channel photons in tree-

level graphs, such as in Fig. 1 (a, b, d, e). Real-emission corrections lead to Feynman graphs

such as the one shown in Fig. 2 (d): the final-state d and ū quarks may lead to observable

jets, allowing vanishing momentum transfer for the virtual photon and a corresponding

collinear singularity, representing, in the case shown, a QED correction to the LO process

gγ→dūW+. This singularity would have to be absorbed into the renormalization of the

photon distribution function inside the proton. Alternatively, one may impose a cut, |t| >
Q2

γ,min, on the virtuality of the photon and replace the missing piece by the pγ→V jjX cross

section, folded with the appropriate photon density in the proton [24, 28]. We have chosen
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this latter approach: all divergent amplitudes are set to zero below Q2
γ,min = 4 GeV2 and

pγ→V jjX is considered to be a separate electroweak contribution to V jj events, which we

do not calculate here.

When imposing typical VBF cuts, with their large-rapidity separation and concomitant

invariant mass of the two tagging jets, the pγ→V jjX contribution to the EW V jj cross

section is quite small. For the VBF cuts defined in the next section, with pTj > 20 GeV and

a rapidity separation of the two tagging jets of ∆yjj > 4, the NLO W+jj cross section, for

example, increases by a mere 0.2% when lowering the photon cutoff to Q2
γ,min = 0.1 GeV2

from our 4 GeV2 default value2. This number increases to 0.7% for ∆yjj > 2. Because

these contributions are negligible, we have not yet implemented the calculation of this small

missing piece in our program.

In the computation of cross sections and distributions presented below, we have used

the CTEQ6M parton distribution functions (PDFs) [29] with αs(mZ) = 0.118 for all NLO

results and CTEQ6L1 parton distributions for all LO cross sections. The CTEQ6 fits include

b quarks as an active flavor. For consistency, the b quark is included as an initial- and/or

final-state massless parton in all neutral-current processes, i.e., we include only those pro-

cesses with external b quarks, where no internal top-quark propagator appears via the btW

vertex, being forbidden by Feynman rules. Top-quark contributions, obviously, go beyond

our massless-fermion approximation and would have to be treated as a separate process.

Allowed neutral-current processes with b quarks appear for Z production only. The b-quark

contributions are quite small, however, affecting the Z-boson production cross section at the

1% level only.

We choose mZ = 91.188 GeV, mW = 80.419 GeV and the measured value of GF as our

electroweak input parameters, from which we obtain αQED = 1/132.51 and sin2 θW = 0.2223,

using LO electroweak relations. The decay widths are then calculated as ΓW = 2.099 GeV

and ΓZ = 2.510 GeV, which agrees with their Particle Data Group [30] values at the level of

0.9% and 0.6% respectively, which is better than the overall theoretical uncertainty we are

striving for.

In order to reconstruct jets from the final-state partons, the kT algorithm [31], as de-

scribed in Ref. [32], is used, with resolution parameter D = 0.8.

2The finite proton mass provides an absolute lower bound on the photon virtuality, Q2

γ
>∼ m2

p(m
2

V jj/xs)2,

where mV jj is the invariant mass of the produced system and x denotes the Feynman x of the colored parton

in the subprocesses for pγ→V jjX . We have chosen the lower cutoff of Q2

γ,min
= 0.1 GeV2 for a very rough

simulation of the resulting finite photon flux.
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4 Results for the LHC

The parton-level Monte Carlo program described in the previous section has been used

to determine the size of the NLO QCD corrections to EW V jj cross sections at the LHC.

Using the kT algorithm, we calculate the partonic cross sections for events with at least two

hard jets, which are required to have

pTj ≥ 20 GeV , |yj| ≤ 4.5 . (4.1)

Here yj denotes the rapidity of the (massive) jet momentum which is reconstructed as the

four-vector sum of massless partons of pseudorapidity |η| < 5. The two reconstructed jets of

highest transverse momentum are called “tagging jets” and are identified with the final-state

quarks which are characteristic for vector-boson fusion processes.

We consider decays Z→ℓ+ℓ− and W→ℓνℓ into a single generation of leptons. In order to

ensure that the charged leptons are well observable, we impose the lepton cuts

pTℓ ≥ 20 GeV , |ηℓ| ≤ 2.5 , △Rjℓ ≥ 0.4 , (4.2)

where Rjℓ denotes the jet-lepton separation in the rapidity-azimuthal angle plane. In ad-

dition, the charged leptons are required to fall between the rapidities of the two tagging

jets,

yj,min < ηℓ < yj,max . (4.3)

We do not specifically require the two tagging jets to reside in opposite detector hemi-

spheres for the present analysis. Backgrounds to VBF are significantly suppressed by re-

quiring a large rapidity separation of the two tagging jets. Unless stated otherwise, we

require

∆yjj = |yj1 − yj2| > 4 . (4.4)

Cross sections, within the cuts of Eqs. (4.1)–(4.4), are shown in Fig. 4, for Wjj produc-

tion, and in Fig. 5, for the Zjj case. In both figures, the scale dependence of the LO and

NLO cross sections is shown for fixed renormalization and factorization scales, µR and µF ,

which are tied to the masses of the produced vector bosons mV

µR = ξRmV , µF = ξF mV . (4.5)

The LO cross sections only depend on µF = ξ mV . At NLO we show three cases: (a)

ξF = ξR = ξ (red solid line); (b) ξF = ξ, ξR = 1 (blue dot-dashed line); and (c) ξR = ξ,

ξF = 1 (green dashed line). While the factorization-scale dependence of the LO result is

sizable, the NLO cross sections are quite insensitive to scale variations: allowing a factor 2

variation in either directions, i.e., considering the range 0.5 < ξ < 2, the NLO cross sections

change by less than 1% in all cases.
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Figure 4: Scale dependence of the total cross section at LO and NLO within the cuts

of Eqs. (4.1)–(4.4) for W− and W+ production at the LHC. The decay branching

ratio of the W is included in the definition of the cross section, here and in all

subsequent figures. The factorization scale µF and/or the renormalization scale µR

have been taken as multiples of the vector-boson mass, ξ mW , and ξ is varied in the

range 0.1 < ξ < 10. The NLO curves are for µF = µR = ξmW (solid red line),

µF = mW and µR = ξ mW (dashed green line) and µR = mW and µF variable

(dot-dashed blue line). The dotted black curve shows the dependence of the LO cross

section on the factorization scale. At this order, αs(µR) does not enter.

As a second option, we have considered scales tied to the virtuality of the exchanged

electroweak bosons. Specifically, independent scales Qi are determined as in Eqs. (2.2)

and (2.5) for radiative corrections on the upper and on the lower quark line, and we set

µF i = ξFQi , µRi = ξRQi . (4.6)

This choice is motivated by the picture of VBF as two independent deep-inelastic scattering

type events, with independent radiative corrections on the two electroweak-boson vertices.

Resulting V jj cross sections at NLO are about 1% lower for µF = µR = Qi than for

µF = µR = mV . In the following, we refer to the latter choice as the “M scheme” while the

choice µF = µR = Qi is called the “Q scheme”. As we will see below, a residual NLO scale

dependence of about 1%–2% is also typical for distributions, resulting in very stable NLO

predictions for V jj cross sections.

In addition to these quite small scale uncertainties, we have estimated the error of the

W±jj cross sections due to uncertainties in the determination of the PDFs. This error is
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Figure 5: Same as Fig. 4, but for Z production at the LHC, with the Z→µ+µ−

branching ratio included in the definition of the cross section, here and in all subse-

quent figures.

determined by calculating the total Wjj cross section, within the cuts of Eqs. (4.1)–(4.4),

using two different sets of PDFs with errors, computed by the CTEQ [29] and MRST [33]

Collaborations. Together with the PDF that gives the best fit to the data, the CTEQ6M set

provides 40 PDFs, and the MRST2001E 30 PDFs, which correspond to extremal plus-minus

variations in the directions of the error eigenvectors of the Hessian, in the space of the fitting

parameters. To be on the conservative side, we have added the maximum deviations for each

error eigenvector in quadrature, and we have found a total PDF uncertainty of ±4% with

the CTEQ PDFs, and of roughly ±2% with the MRST set.

For precise comparisons with future LHC data, the residual theoretical error on the jet

and lepton distributions must be estimated. As a first example, we show the transverse-

momentum distribution of the highest-pT tagging jet for W+jj production in Fig. 6 (a): the

shape of the pT distribution is fairly similar at LO (red dashed curve) and NLO (black solid

line). Both curves were obtained with a scale choice of µR = µF = mW . In the right-hand

panel their ratio to the NLO curve with µR = µF = Qi is shown. The ratio of the two NLO

distributions deviates from unity by 2% or less over the entire range, which, again, points to

the small QCD dependence of our calculation.

In contrast to the stability of the NLO result, the LO curves depend appreciably on the
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Figure 6: Transverse-momentum distribution of the highest-pT tagging jet in W+

production at the LHC. In panel (a) the NLO result (solid black line) and the LO

curve (dashed red line) are shown for the scale choice µF = µR = mW (M scheme).

In panel (b), we show the ratios of the NLO differential cross section in the M

scheme (solid black line), of the LO one in the M scheme (dashed red line) and of

the LO one in the Q scheme (blue dotted line) to the NLO distribution in the Q

scheme, which is defined via the scale choice µF = µR = Qi.

scale choice. The blue dotted line and the red dashed line in Fig. 6 (b) give the ratio of

the LO curves for µF = Qi and µF = mW , respectively, to the NLO result. The shape of

the LO curves, in particular for a constant scale choice like µF = mW , is quite different

from the more reliable NLO result. For transverse-momentum distributions we generally

find that the “dynamical” scale choice µF = Qi, at LO, better reproduces the shape of

the NLO distributions, and is thus preferable to a fixed scale. At NLO, or higher order,

where the definition of the momentum transfer Qi becomes more problematic, the fixed-scale

choice becomes more natural. However, because of the greater stability of the cross-section

prediction, the scale selection also becomes less of a phenomenological issue.

Rapidity distributions of the two tagging jets are shown in Fig. 7, at LO and NLO, and

for two choices of the rapidity-gap requirement, ∆yjj > 2 and ∆yjj > 4. The shapes of

the rapidity distributions for the more central tagging jet, panel (a), and the more forward

tagging jet, panel (b), are quite similar at LO and NLO. In fact, the K factors for these

distributions are fairly flat, and adequately described by a constant value of about 1.1.

The results in Fig. 7 were obtained for a fixed scale µF = µR = mW and are for W−jj
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Figure 7: W− production cross section as a function of (a) the smaller and (b)

the larger absolute value of the two tagging-jet rapidities. Results are shown for a

rapidity separation between the two tagging jets greater than 2 and 4 (higher and

lower pairs of curves, respectively). The LO cross section is always slightly below the

NLO result. Due to the rapidity cut of Eq. (4.1), the distributions are truncated at

|yj| = 4.5.

production. Curves for the W+jj and Zjj cross sections are very similar in shape and show

the preservation of shape between LO and NLO curves.

While tagging-jet distributions are quite similar for electroweak Wjj and Zjj events at

the LHC, the presence of two charged leptons in the Zjj case results in somewhat more

noticeable differences. When considering changes in the lepton pT cut of Eq. (4.2), the

transverse momentum of the softer lepton is critical for Z production, while the single charged

lepton must be considered for Wjj events. These distributions are shown in Fig. 8 for W+

production (top panels) and Z production (bottom panels). At NLO the scale variations are

again very small, at the 1% level, as demonstrated by the ratios of the NLO pT distributions

for µF = µR = mV and µF = µR = Qi (solid black lines) in Fig. 8 (b, d). Varying either

scales by a factor of 2 leads to the same conclusion of 1%–2% scale uncertainties for the

NLO results. Comparing the LO predictions (dashed and dot-dashed curves) with the very

precise NLO results shows theoretical errors of the order of 10%. Again, as for the jet pT

distributions discussed earlier, the choice µF = Qi is better for simulating the shape of the

lepton pT distribution at LO. A fixed scale, µF = mV , predicts too steep a fall-off at large

pT . One should note, however, that for the electroweak V jj processes considered here, these

differences are exceptionally small already at LO: the differences between the LO curves in
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Figure 8: Transverse-momentum distributions of the charged final-state lepton in

W+ production [panels (a) and (b)] and of the softest of the two final-state leptons in

Z production [panels (c) and (d)]. The solid black curves in panel (a) and (c) rep-

resent the NLO cross sections and the red dashed curves the LO ones, for scales

µR = µF = mV (M scheme). Panels (b) and (d) show the ratio of the NLO

transverse-momentum distribution computed in the M and Q scheme (black solid

line), and the K factors in the Q (red dashed line) and M (blue dot-dashed line)

schemes.
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Fig. 8 are of the order of 10% only.

In contrast to the lepton transverse-momentum distributions described above, the shape

of the lepton-rapidity distributions is virtually unaffected by the NLO corrections: an overall

constant K factor is sufficient to describe NLO effects. Larger changes are found when

considering angular correlations of the leptons and jets, which we show for Zjj production

in Fig. 9. The top panels show the minimal rapidity between any of the two leptons and

the two tagging jets, ∆ymin
tag,l. As before, the tagging jets are taken as the two highest

transverse-momentum jets in the event (pT selection). The two bottom panels show the

minimal separation in the rapidity-azimuthal angle plane of the two leptons from any jet

(not necessarily the two tagging jets) in the event, Rmin
j,l . In both cases, the two scale choices

for the NLO result show excellent agreement (black solid lines in Fig. 9 (b, d)). However,

the dynamical K factors

K(x) =
dσNLO/dx

dσLO/dx
(4.7)

for x = ∆ymin
tag,l and x = Rmin

j,l show qualitatively different behavior. While K(∆ymin
tag,l) is fairly

constant, i.e., the shape of the distribution is well described by the LO approximation, the

minimal lepton-jet separation, dσ/dRmin
j,l , shifts noticeably to smaller values at NLO. This

behavior was to be expected, since additional parton emission in the higher-order calculation

reduces lepton isolation. What is remarkable, then, is that the selection of the tagging jets

as the two highest-pT jets does not affect the lepton-tagging jet separation. As for the Higgs

boson case [15], this selection of the tagging jets provides excellent correspondence of the

LO- and NLO-event topology.

In order to stress this point we show dijet invariant-mass distributions for the recon-

structed jets (not necessarily the two tagging jets) for W+jj events at LO (red dashed lines)

and at NLO (solid black lines) in Fig. 10. The distribution with respect to the minimal dijet

invariant mass in the event is shown in Fig. 10 (a) while Fig. 10 (b) uses the invariant mass

of the two tagging jets, mtags. At LO, there are only two final-state quarks of pT > 20 GeV

in each event and, hence, the two curves are identical. At NLO, additional parton emission

provides for soft third jets which form low invariant-mass pairs with one of the tagging jets,

and this pair shows up as a low-mass peak in dσ/dmmin
jj . Generic selections of the two tag-

ging jets in a multijet environment tend to pick up some of these low-mass pairs and lead

to substantial differences in the invariant-mass distribution of the two tagging jets at LO

and at NLO. The pT selection of tagging jets, which we have used throughout and for which

results are shown in Fig. 10 (b), is remarkable in that it preserves the shape of the tagging

jet invariant-mass distribution, dσ/dmtags, when going from LO to NLO.
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Figure 9: Angular correlations of leptons and jets in Z production. Panels (a)

and (b) show the minimum rapidity separation between the two leptons and the two

tagging jets. Panels (c) and (d) are for the minimum rapidity-azimuthal angle sepa-

rations between the leptons and any reconstructed jets (not necessarily the two tagging

jets). The NLO differential cross sections are shown in black solid lines, while the

LO ones are displayed as red dashed lines. Scales are fixed in the M scheme. Pan-

els (b) and (d) show the ratio between the two NLO differential cross sections in the

M and Q scheme (solid black lines) and their respective K factors.
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Figure 10: Dijet invariant-mass distributions for W+ production, with scales in

the M scheme. Shown are (a) the minimum dijet invariant-mass distribution for

any final-state reconstructed jets (not necessarily the two tagging jets) and (b) the

invariant mass of the two tagging jets. NLO results are shown in solid black lines,

while the red dashed lines are for LO distributions.

5 Conclusions

Vector-boson fusion at the LHC represents a class of electroweak processes which are

under excellent control perturbatively. This has been known for some time for the most

interesting process in this class: Higgs boson production via VBF has a modest K factor

of about 1.05 for the inclusive production cross section [14] and this result also holds when

applying realistic acceptance cuts [15].

In the present paper, we have extended this result to the electroweak production of

W and Z plus two jets, when the final-state particles are in a kinematic configuration

typical of VBF events. More precisely, we have calculated the NLO QCD corrections to

electroweak production of ℓνℓjj and ℓ+ℓ−jj at LHC, and we have implemented them in a

fully-flexible NLO Monte Carlo program. K factors are of the same size as for the Higgs

boson production process, typically ranging between 1.0 and 1.1 for most distributions. What

is more important is the stability of the NLO result: residual scale dependence is at the 2%

level or below. This is smaller than the present parton-distribution-function uncertainties,

which we have calculated for the W±jj cross sections. We estimate 4% PDF errors using

CTEQ6M parton distributions and roughly half that size using MRST2001E PDFs.
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Given the excellent theoretical control which we now have for EW V jj production, these

processes can be used as testing grounds for Higgs boson production in VBF: techniques

should be developed to measure hadronic properties, like forward-jet tagging efficiencies or

central-jet-veto probabilities, in Wjj or Zjj production at the LHC and to extrapolate

these results to Higgs boson production, thus reducing the systematic errors for Higgs boson

coupling measurements. We leave such applications for the future.
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A Virtual corrections

In this appendix, we give the expression for the finite, reduced amplitude M̃τ (q1, q2) that

appears in Eqs. (2.5) and (2.6), in terms of B̃0, C̃0 and D̃ij functions. Here B̃0, C̃0 and D̃ij

are the finite parts of the Passarino-Veltman B0, C0 and Dij functions [34], and are given

explicitly below. We have also derived M̃τ(q1, q2) in terms of B̃0, C̃0 and D̃0 functions, but

do not show this expression here, due to its length. We write

M̃τ (q1, q2) = ψ(k2) [c1ǫ/1 + c2ǫ/2 + cq (q/1 − q/2) + cbǫ/2 (k/2 + q/2) ǫ/1]
1 + τγ5

2
ψ(k1) , (A.1)

where ǫ1 = ǫ1(q1) and ǫ2 = ǫ2(q2) are the effective polarization vectors of the two electroweak

gauge bosons. The coefficient function c1 = c1(q1, q2) is given by

c1 = 2ǫ2 · k2Tǫ

(

q2
2 , t
)

− 2
[

D̃12(k2, q2, q1) + D̃24(k2, q2, q1)
]

ǫ2 · k2

(

q2
1 + q2

2 − 3s− 4t
)

− 2
[

D̃12(k2, q2, q1) − D̃24(k2, q2, q1)
]

ǫ2 · q1
(

q2
2 − t

)

+ 4
[

−D̃11(k2, q2, q1)ǫ2 · k2s− D̃12(k2, q2, q1)ǫ2 · k1t+ D̃13(k2, q2, q1)ǫ2 · k2

(

q2
2 − s− t

)

+ D̃13(k2, q2, q1)ǫ2 · q1q2
2 − D̃21(k2, q2, q1)ǫ2 · k2s− D̃22(k2, q2, q1)ǫ2 · k2t

− D̃22(k2, q2, q1)ǫ2 · q1q2
2 + D̃23(k2, q2, q1)ǫ2 · k2q

2
1 + D̃25(k2, q2, q1)ǫ2 · k2

(

q2
2 − s− 2t

)

− D̃26(k2, q2, q1)ǫ2 · k2

(

q2
2 − s− t

)

+ D̃26(k2, q2, q1)ǫ2 · q1t+ 2D̃27(k2, q2, q1)ǫ2 · q1
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− D̃32(k2, q2, q1)ǫ2 · k2q
2
2 − D̃34(k2, q2, q1)ǫ2 · k2(q

2
2 − t)

+ D̃36(k2, q2, q1)ǫ2 · k2

(

2q2
2 − t

)

+ D̃37(k2, q2, q1)ǫ2 · k2q
2
1

+ D̃35(k2, q2, q1)ǫ2 · k2

(

q2
2 − s− t

)

+ D̃38(k2, q2, q1)ǫ2 · k2

(

q2
1 + q2

2 − s
)

− D̃39(k2, q2, q1)ǫ2 · k2q
2
1 − D̃310(k2, q2, q1)ǫ2 · k2

(

q2
1 + 2q2

2 − 2s− t
)

− 4D̃311(k2, q2, q1)ǫ2 · k2 + 6D̃312(k2, q2, q1)ǫ2 · k2 + 2D̃313(k2, q2, q1)ǫ2 · q1
]

, (A.2)

where

Tǫ

(

q2, t
)

=
1

t− q2

{

[

B̃0(t) − B̃0(q
2)
] 2t+ 3q2

t− q2
+ 2B̃0(q

2) + 1 − 2q2C̃0(q
2, t)

}

(A.3)

is defined in terms of the finite parts of the B0 and C0 functions

B̃0(q
2) = 2 − ln

q2 + i0+

s
(A.4)

and

C̃0(q
2, t) =

1

2(t− q2)

(

ln2 q
2 + i0+

s
− ln2 t+ i0+

s

)

. (A.5)

These expressions are obtained by pulling a common factor Γ(1+ ǫ)(−s)−ǫ ≡ Γ(1 + ǫ)/(Q2)ǫ

out of all amplitudes and Passarino-Veltman functions, e.g.,

B0(q
2) =

∫ ddk

iπd/2

1

k2(k + q)2
=

Γ(1 + ǫ)

ǫ

Γ(1 − ǫ)2

Γ(2 − 2ǫ)
(−q2 − i0+)−ǫ

=
Γ(1 + ǫ)

(−s)ǫ

[

1

ǫ
+ 2 − ln

q2 + i0+

s
+ O (ǫ)

]

=
Γ(1 + ǫ)

(Q2)ǫ

[

1

ǫ
+ B̃0(q

2) + O (ǫ)
]

. (A.6)

For the other coefficient functions ci = ci(q1, q2) we find

c2 = −2
[

D̃12(k2, q2, q1) + D̃24(k2, q2, q1)
] [

ǫ1 · k2

(

q2
1 + q2

2 − s− 2t
)

+ ǫ1 · q2
(

q2
2 − s− 3t

)]

+ 4
[

D̃13(k2, q2, q1)ǫ1 · k2q
2
1 − D̃13(k2, q2, q1)ǫ1 · k1(2s+ t) + D̃22(k2, q2, q1)ǫ1 · k1q

2
2

− D̃23(k2, q2, q1)ǫ1 · k2t+ D̃23(k2, q2, q1)ǫ1 · q2
(

q2
1 − t

)

− D̃24(k2, q2, q1)ǫ1 · k1q
2
2

+ D̃25(k2, q2, q1)ǫ1 · k2q
2
1 + D̃25(k2, q2, q1)ǫ1 · k1

(

q2
2 − 2s− t

)

+ D̃26(k2, q2, q1)ǫ1 · k2t

− D̃26(k2, q2, q1)ǫ1 · k1

(

q2
1 − s

)

− 2D̃27(k2, q2, q1)ǫ1 · q2 + D̃33(k2, q2, q1)ǫ1 · k2q
2
1

+ D̃33(k2, q2, q1)ǫ1 · q2q2
1 + D̃37(k2, q2, q1)ǫ1 · k1

(

q2
2 − s− t

)

+ D̃38(k2, q2, q1)ǫ1 · k1q
2
2

− D̃39(k2, q2, q1)ǫ1 · k1

(

q2
1 + q2

2 − s
)

− D̃310(k2, q2, q1)ǫ1 · k1

(

q2
2 − t

)

+ 2D̃311(k2, q2, q1)ǫ1 · k2 + 2D̃312(k2, q2, q1)ǫ1 · q2 − 6D̃313(k2, q2, q1)ǫ1 · k1

]

+ 2ǫ1 · k1Tǫ

(

q2
1, t
)

, (A.7)
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cq =
[

D̃12(k2, q2, q1) + D̃24(k2, q2, q1)
]

ǫ1 · ǫ2s+ 2
[

4D̃12(k2, q2, q1)ǫ2 · k2ǫ1 · k2

+ 3D̃12(k2, q2, q1)ǫ2 · k2ǫ1 · q2 + D̃12(k2, q2, q1)ǫ2 · q1ǫ1 · k2 − 4D̃13(k2, q2, q1)ǫ2 · k2ǫ1 · k2

− 2D̃13(k2, q2, q1)ǫ2 · k2ǫ1 · q2 − 2D̃13(k2, q2, q1)ǫ2 · q1ǫ1 · k2 − D̃13(k2, q2, q1)ǫ1 · ǫ2s

+ 2D̃22(k2, q2, q1)ǫ2 · k2ǫ1 · q2 − D̃22(k2, q2, q1)ǫ1 · ǫ2t− 2D̃23(k2, q2, q1)ǫ2 · q1ǫ1 · k2

− 2D̃23(k2, q2, q1)ǫ2 · q1ǫ1 · q2 − D̃23(k2, q2, q1)ǫ1 · ǫ2t+ 6D̃24(k2, q2, q1)ǫ2 · k2ǫ1 · k2

+ 3D̃24(k2, q2, q1)ǫ2 · k2ǫ1 · q2 + D̃24(k2, q2, q1)ǫ2 · q1ǫ1 · k2 − 6D̃25(k2, q2, q1)ǫ2 · k2ǫ1 · k2

− 2D̃25(k2, q2, q1)ǫ2 · k2ǫ1 · q2 − 2D̃25(k2, q2, q1)ǫ2 · q1ǫ1 · k2 − D̃25(k2, q2, q1)ǫ1 · ǫ2s

− 4D̃26(k2, q2, q1)ǫ2 · k2ǫ1 · q2 + 4D̃26(k2, q2, q1)ǫ2 · q1ǫ1 · k2 + 2D̃26(k2, q2, q1)ǫ2 · q1ǫ1 · q2
+ D̃26(k2, q2, q1)ǫ1 · ǫ2 (s+ 2t) − D̃32(k2, q2, q1)ǫ1 · ǫ2q2

2 + D̃33(k2, q2, q1)ǫ1 · ǫ2q2
1

+ 2D̃34(k2, q2, q1)ǫ2 · k2ǫ1 · k2 − 2D̃35(k2, q2, q1)ǫ2 · k2ǫ1 · k2

+ D̃36(k2, q2, q1)ǫ1 · ǫ2
(

q2
2 − t

)

− 2D̃37(k2, q2, q1)ǫ2 · q1ǫ1 · k2

+ 2D̃36(k2, q2, q1)ǫ2 · k2ǫ1 · q2 + D̃37(k2, q2, q1)ǫ1 · ǫ2
(

q2
2 − s− t

)

+ 2D̃38(k2, q2, q1)ǫ2 · q1ǫ1 · q2 + D̃38(k2, q2, q1)ǫ1 · ǫ2
(

q2
1 + 2q2

2 − s
)

− 2D̃39(k2, q2, q1)ǫ2 · q1ǫ1 · q2 − D̃39(k2, q2, q1)ǫ1 · ǫ2
(

2q2
1 + q2

2 − s
)

− 2D̃310(k2, q2, q1)ǫ2 · k2ǫ1 · q2 + 2D̃310(k2, q2, q1)ǫ2 · q1ǫ1 · k2

− D̃310(k2, q2, q1)ǫ1 · ǫ2
(

2q2
2 − s− 2t

)

+ 4D̃312(k2, q2, q1)ǫ1 · ǫ2

− 4D̃313(k2, q2, q1)ǫ1 · ǫ2
]

, (A.8)

cb = −2
{ [

D̃36(k2, q2, q1) + D̃37(k2, q2, q1) − 2D̃310(k2, q2, q1)
] (

q2
2 − t

)

+ D̃38(k2, q2, q1)
(

q2
1 + 2q2

2

)

− D̃39(k2, q2, q1)
(

2q2
1 + q2

2

) }

− 2
[

D̃0(k2, q2, q1)

+ D̃11(k2, q2, q1) + D̃12(k2, q2, q1) − 2D̃13(k2, q2, q1) + D̃24(k2, q2, q1) − D̃25(k2, q2, q1)

+ D̃26(k2, q2, q1) − D̃37(k2, q2, q1) − D̃38(k2, q2, q1) + D̃39(k2, q2, q1) + D̃310(k2, q2, q1)
]

s

+ 2
{ [

D̃22(k2, q2, q1) + D̃23(k2, q2, q1) − 2D̃26(k2, q2, q1)
]

t− 2D̃27(k2, q2, q1)

+ D̃32(k2, q2, q1)q
2
2 − D̃33(k2, q2, q1)q

2
1 − 6

(

D̃312(k2, q2, q1) − D̃313(k2, q2, q1)
) }

− 1

t

[

Tb(q
2
1, t) + Tb(q

2
2, t) + B̃0(t) − 5 +

π2

3

]

, (A.9)

with

Tb(q
2, t) =

1

t− q2

{

2q2
[

B̃0(t) − B̃0(q
2)
]

+ tB̃0(t) − q2B̃0(q
2)
}

− 2q2C̃0(q
2, t) . (A.10)
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For the crossed function M̃(q2, q1), the same expressions as above apply, with the obvious

interchange q1 ↔ q2, ǫ1 ↔ ǫ2, and t→u.

The finite part of the D0 function is defined by

D̃0(k2, q2, q1) =
1

2st

[

ln2 q
2
1q

2
2

t2
+ 4 Li2

(

1 − t

q2
1

)

+ 4 Li2

(

1 − t

q2
2

)

− π2

3

]

. (A.11)

This expression is well defined when all invariants, q2
1 , q

2
2 and t, are space-like. In our

application, we always have one space-like and one time-like weak boson, i.e., exactly one of

the two quotients t/q2
i is positive. In the other quotient simply replace the time-like invariant

by t→ t+ i0+ or q2
i → q2

i + i0+, as in Eqs. (A.4) and (A.5).

The remaining finite D̃ij functions are obtained from the above expressions for the B̃0,

C̃0, and D̃0 functions with the usual Passarino-Veltman recursion relations given in Ref. [34],

adapted to the Bjorken-Drell metric, q2
i > 0 for a time-like momentum qi. In these recursion

relations we need the additional finite B̃0 and C̃0 functions

B̃0(0) = 0 , (A.12)

C̃0(k2, q1 + q2) = C̃0(s, 0, 0) =
1

s

π2

6
, (A.13)

while

C̃0(q1, q2) = C0(q
2
1, q

2
2, s) (A.14)

is the infrared- and ultraviolet-finite C0 function for massless internal propagators but with

nonzero invariants q2
1, q

2
2 and s.
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