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● Phenomenological motivations

● IR singularities and antenna subtraction method

● First results for analytically integrated antennae 
         for hadron-hadron processes

● Prospects and conclusions



  

G. Salam

Collider  SearchesCollider  Searches

Not all discoveries are easy at LHC, don't always
get a resonance peak or sharp kinematic structure

Examples: Higgs  WW , unreconstructed SUSY cascades→

- Broad excess across many bins

- Knowledge of background is crucial for discovery 
               



  

Collider  SearchesCollider  Searches

● Higgs search requires combining many kinematic
  variables to see a slight excess over background 

● Susy searches require an understanding 
   of the transverse mass shape

What do we need to predict the shapes of the backgrounds ?



  

Z+jet as an exampleZ+jet as an example

G. Salam

● QCD gives very different corrections to various observables of interest

● NLO corrections  can be large in certain kinematic regions, need NNLO      
   precision to correctly describe the shape of several observables.



  

● What experimentalists need:  fully differential numerical programs with NNLO precision that    
   are flexible and allow to take into account complicated detector geometries and jet definitions. 

The way to a differential NNLO MC programThe way to a differential NNLO MC program

● The ingredients needed to construct such NNLO programs (eg. V+jet):



  

● An infrared safe observable forces us to integrate over the unresolved phase space 
 to extract the implicit poles. A desirable way to do that is to integrate analytically.
 

    
 problem:
   - differential cross sections require jet functions.  Jet functions are                
        functions that allow for arbitrary cuts on the phase space

   - the presence of the jet function doesn't make it possible to integrate analytically

   

 Solution:  extract the IR singularities of the real radiation using IR subtraction terms.
              - They must have the same unintegrated singular behaviour in all singular         
                   regions of phase space.  
              - They must be sufficiently simple to be integrated analytically

Finite, can be integrated numerically Integrated analytically

IR SafetyIR Safety

mass factorization
Counter term



  

Subtraction @ NNLOSubtraction @ NNLO

Structure of NNLO m-jet cross section:

d  NNLO
S : real radiation subtraction term for d  NNLO

R

d  NNLO
VS ,1 : One-loop virtual subtraction term for d  NNLO

V ,1

d  NNLO
V ,2 : two-loop virtual corrections

Each of the differences above is finite and can be integrated numerically



  

Subtraction MethodsSubtraction Methods

All based on the factorization properties of phase space and matrix elements in
soft and collinear limits
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2
 P abc X∣M  , X ,∣

2
ang a∥b∥c   for

∣M  , a , b , c , d ,∣
2
 S abcd∣M  , a , d ,∣

2
for b ,c 0

At NNLO there are double and single unresoved configurations 

Double unresolved

● triple collinear
● double single collinear
● soft-collinear
● double soft

Single unresolved

● soft
● collinear

● Antenna Subtraction  ( NLO:   Kosower, Campbell, Cullen, Glover, Daleo, Maitre, T.Gehrmann
                                       NNLO:  A. Gehrmann, T. Gehrmann, N. Glover )

First results: ee  2 jets @ NNLO→   (A. Gehrmann, T. Gehrmann, N. Glover ; S: Weinzierl)

                   ee  3 jets @ NNLO→   (A. Gehrmann, T. Gehrmann, N. Glover, G. Heinrich ; S. Weinzierl)



  

Antenna Functions Antenna Functions 
Antenna functions: derived from physical matrix elements normalized to two-parton 
matrix elements 

 tree level four-parton antenna 

one-loop three parton antenna 

NNLO: two unresolved partons

qq   q qfrom
  g gq g from
H  g gg g from

eg.

product of two three-parton antenna

NLO

q g , g g

They refer to colour-ordered pairs of hard partons
 qq , with radiations in between



  

Antenna Subtraction: building block @ NLOAntenna Subtraction: building block @ NLO

X ijk
0

×

×

● Antenna functions contain all singular configurations of parton j emitted between
 two hard color-connected partons i & k   

● An appropriate mapping of momenta                                 leads to the factorization 
  of the phase space 

{ p i , p j , pk } { p I , pK }
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Integrated Subtracted Terms for Two Unresolved PartonsIntegrated Subtracted Terms for Two Unresolved Partons

● Final-final antennae: 

   - needed for lepton-lepton collider observables

    -  applied already to ee  3jets →  A. Gehrmann, T. Gehrmann, N. Glover, G. Heinrich;  S. Weinzierl

     - all unintegrated and integrated f-f antennae are known

● Initial-final antennae:    A. Daleo, A.. Gehrmann, T. Gehrmann, G. Luisoni

     - needed for lepton-hadron collider observables (eg. DIS (2+1)-jet production)

    - known in the unintegrated and integrated form   

● Initial-initial antennae:  R. B., A. Gehrmann-De Ridder, M. Ritzmann

   - Required for any process with two hadronic initial states, 

      eg. V+j, pp  2jets, W-pair production→
Th

is 
tal
k

- were missing until this work



  

Initial-initial Antenna Functions: Double Real Radiation  2  3→Initial-initial Antenna Functions: Double Real Radiation  2  3→

Kinematics:

● Obtain antenna functions for double real radiation by crossing 1  4 NNLO antenna→

       each final-final antenna produces 6 initial-initial antennae 

       depending on symmetries of the antenna, some of the 6 antennae can be identical  

1  4 2  3

p1  p2  q  k 1 k 2

with q20

Phase space factorization  ( Daleo, Gehrmann, Maitre):

d m 2 k1 , , km 2 ; p1 , p2 = d m  k1 ,  , k i , k l , , km 2 ; x1 p1 , x2 p2

[dk j ] [dk k ] d x1 d x2 J  q2− x1 x2 s12  2  x2 p2− x1 p1⋅q 

With: J = s12  x1  s12− s1j− s1k  x2  s12− s2j− s2k 

crossing

Factorization achieved with the Lorentz boost: q  q= x1 p1 x2 p2 ; k  k



  

Initial-initial Antenna Functions: Double Real Radiation  2  3→Initial-initial Antenna Functions: Double Real Radiation  2  3→

Integration: inclusive three-particle phase space integrals with               fixed.q2 , x1 , x2

Map phase space integrals into cut  loop integrals using unitarity   (Anastasiou, Melnikov) 

Cutkosky rules: 

Apply to  q2 − x1 x2 s12 ,  2  x2 p2 − x1 p1⋅q 

 q i
2
− m i

2
 ⇒

1

q i
2
− m i

2
− i 

−
1

q i
2
− m i

2
i 

● Mass-shell conditions for auxiliary propagators           constraints on the phase space
● Use integration by parts identities and Laporta algorithm to reduce all phase space 
 integrals  into a small set of master integrals: ~ 30



  

The                 AntennaeThe                 AntennaeB4
0 , H 4

0 , E 4
0

B4
0 q , q ' ,q ' ,q 

E 4
0 q , q ' ,q ' , g 

H 4
0 q ,q ,q ' ,q ' 

collapses to the hard partons

collapses to the hard partons

collapses to the hard partons

q q

q g

g g

H 4
0

 q1 ↔ q2

B4
0

single unresolved:

1 || 2 or 3 || 4

double unresolved:

1 || 2 &  3 || 4

single unresolved:

 3 || 4

double unresolved:

1 ||  3 || 4
      or
2 ||  3 || 4
      or
3 → 0, 4 → 0  

E 4
0

single unresolved:

     5 || 3  or  5 || 4  
               or  
            5 → 0

double unresolved:

3 ||  4  ||  5

Singularities taken care of by these antennae (final-final as example)



  

The                 AntennaeThe                 AntennaeB4
0 , H 4

0 , E 4
0

13 masters  are involved in the calculation of B4
0 , H 4

0 , E 4
0

, only scalar ones are shown

B4
0 q , q ' ,q ' ,q 

E 4
0 q , q ' ,q ' , g 

H 4
0 q ,q ,q ' ,q ' 

collapses to the hard partons

collapses to the hard partons

collapses to the hard partons

q q

q g

g g

 

● Computed the master integrals analytically using differential equations and a basis of 
 generalized harmonic polylogarithms (GHPLs) of dimension two 



  

First results for initial-initial antennaeFirst results for initial-initial antennae

Just to get a feeling of what the integrated antennae look like, only the leading poles are 
shown here,  see JHEP 1102:098,2011  (R. B., A. Gehrmann, M. Ritzmann) . 



  

ConclusionsConclusions

● Precision QCD is crucial for reliable and successful LHC physics

● Computing NNLO jet cross sections requires a method to remove IR singularities 

● We have extended the antennae subtraction method to allow the calculation of 

  hadron-hadron processes

    - We have provided results for a subset of the complete set of the needed

       integrated antennae

    - Look forward to first physics applications
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