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Abstract. The status of small x resummation in the timelike kinemasadiscussed. We present a
general procedure to extract the large logarithms of x inMi&factorization scheme and to resum
them in a closed form. New results for the doubly-logaritresummed coefficient functions will
be reviewed. All our resummation formulae are in agremerth whe fixed NNLO computations
recently done by other groups in tMS scheme.
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To fix the ideas, we consider the cross section for the sechiisive hadron produc-
tion in electron-positron annihilation:

e" (k) +e (ko) = V*(a) — h(pn) + X, (1)

whereV* is a virtual vector boson with virtualitf)? = ¢? = (ky + k2)? and X stands
for any allowed hadronic final state. Here we are interestethe differential cross
section for the single hadron productida®(x, Q%) /dxwherex is the scaled momentum
fraction of the produced hadrdn

0<x<1 ()

According to QCD facotrization the cross section can betamiais the convolution of the
partonic cross section to produce a parkavith scaled momentum fractian= x/Z with
the fragmentation functioDy ,(Z) from the parton the hadrdmwith scaled momentum
fractionx (see e.g. Ref.[l]):

@)= 3 [ G D). ®

Usually the partonic cross secti@@e+¢_./dx is written in terms of the coefficient
functionsCy(x, Q%) defined as

1 dOgte .k
Ck(X, Qz) = £ £ ) (4)
algew) dx

wherealEEW) contains all the electro-weak over-all factors.



Perturbation theory fails when the fractionof available energy carried away by
the observed particle is too low, because large logarithpwsl she convergence of
the perturbative series. The largest logarithms, doeble logarithms(DLs), in the
splitting functions that determine the evolution of thegireentation functions have been
computed to all orders a long time ago [2], and have even bsed to perform LO
global fits in QCD [3, 4] to data measured at the smabeslues. The DLs appearing
in the coefficient function€j(x, Q%) are not resummed at LO and are expected to be not
as important as those appearing in the evolution becaug®tiig appear at and beyond
NLO in QCD. However, the inclusion of the DLs in the coeffididanctions could
make a significant improvement to the accuracy of cross@edalculations making
the analysis of Refs. [3, 4] feasible also at NLO. The congplBt contribution to
partonic cross sections has been calculated in Ref.[5Shiocase in which the collinear
singularities are regularized by giving a small masg to the gluon, the so-called
massive gluon (MG) regularization scheme. The inconsisteted in [1, 6] between
the NNLO DLs calculated from the resummed result in Ref. [fl ahose calculated
from the fixed order result in Refs. [7, 8, 9, 10, 11, 12] is nopsising because the two
computations were carried out in two different regulai@atnd factorization schemes,
namely the MG and th#S scheme. The DLs of the gluon coefficient functions have
been computed for the first time in th&S scheme very recently by us in [6]. Here we
will rederive the same result in a less formal but more simydg.

Our goal is to get a resummed cross section inNf&scheme for which the dimen-
sional regularization is necessary. To extract the lealtiggrithmic behavior, we exploit
the factorization of the single gluon probability emissinithe soft-collinear limit. This
is a consequence of the eikonal approximation and colorrenlse as it has been proven
a long time ago in [13, 14]. This result can be used [6] to abthe probability gluon
emission ind = 4 — 2¢ dimensions:

2\ € £
dW<X7Z78):2(gias(u ) r(4n) dx dz

@ (1—¢) xl+2e Zl+e” (5)

whereas = as/2m, p is the dimensional regularization scale taken here and én th
following equal to the renormalization scale and where (1 — cosf)/2 with 6 the
scattering angles of the emitted soft gluon with respech#ltard jet direction. Here
%, = Ca for a gluon jet ands; = Cr for a quark jet. The expression for the probability
emission given in Eq.(5) is what we need to obtain the gluarbability density in
dimensional regularization. Fig.1 shows a diagrammatigvegon of a consistency
relation for the differencial cross section for gluon jebguction which is:

dog = dog +dog tdw(x,z ). (6)

Now introducingG(x, €) the gluon distribution density and taking the limit— o, we
obtain immediately the following bootstrap equation for it

1 1
x1+28g(x,z,e>:5(1—x)+/ d)(/ dZK(X,Z,e) X 2% (X, 2.¢),  (7)
X z

whereK (x,z,€) = dw(x, z £) /dxdzand where the factor of 2 represents our normal-
ization coming from the explicit computation for the firsugh emission witm = 2. In



doy =7, ;= dPS, + 57y

1 2 1 2

_ dPS, & dPS; + Y1)

= do,, + doy~" dw(P5S)

FIGURE 1. Heredg] represents the cross section for the production of a gluoto ugal corrections
of ordern, dPS is thei-particles phase space add(PS,) = dw(x, z ¢) after that azimutal integration is
performed. The factorization of the single gluon probap#imission has been used in the third step.

Eqg.(7) the valugZ(x,z= 0, ) = G(x, €) should be taken only at the end of the computa-
tion. This ensures the strong angular ordering of the ethdtaons, which is necessary
to extract correctly the leading logarithms as proven insj2f 13]. Performing the
Mellin transform,

:/Oldxx“’f(x); w=N-1, (8)

of Eq.(7), then performing also theintegrals, solving recursevely f&f(x,z ) and
finally puttingz = 0 we obtain:

(4m)°

ﬁ(QZH k'ek ﬂw STe 9)

According to the QCD factorization theorem we have thatta! ¢ollinear singularities
in Eg.(9) should be factorized. In thdS factorization scheme this is done requiring
Eq.(9) to be compared with [15, 16],

_ 2 as(u?/ué
G(w,e)ZGMS<w as,S)exp[—E [ e * 98y 0.0 ] (10)

F €Jo

G(w,e)=1+ 5 |2aC
K=1

whereS; = (4m)¢e €% with e the Euler number and wheyg- is the arbitrary factor-
ization scale. The direct comparison of the two Eqs.(9,%0)an trivial. As shown in
[6] a possible way to do this is to compare a simple diffedrgiguation satisfied by



G(w, €) given in Eq.(9) with the same differential equation thisdiobtained by use of
the factoriation constraint given in Eq.(10). We reportentdre result which is given by:

GMS <w, as, S—E> = C_S(w, as) exp[ym(w, as) log <S—§)} , (11)
where
WS (w, a) = %, [—w+ \/w2+16CAas]} . CMS(w,ag) = {4V’V'S(w(j)as)+w} %,
(12)

Expanding the result in Eq.(11) up to NNLO we obtain perfegteement with the
leading logarithmic terms of the fixed order result computetthe literature in the same
scheme (see e.g. Egs.(A.3,A.6) in Ref.[12]).

We conclude noting that attaching the gluon jet to the quiaks| of the LO process
in Eqg.(1), we have that the gluon coefficient function is adow to Eq.(4):

CyS(w,as) = L [Cm(w, as) —1|. (13)
Ca

This result enables us to resum all the DLs in the gluon coeffidunction in theMS
factorization scheme for the first time and according to RETs 18] to have full control
over all the large logarithms in all the coefficient functsoat NLO. Our result Eq.(13)
is also a key ingredient in the determination of #iegle logarithmsn the timelike
splitting functions, which is left to a forthcoming pape®|1
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