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Introduction

The high energy and high luminosity polarized

electrons, protons and ions at the EIC promises:
- a precise 3-D mapping of the proton's internal structure
- fundamental tests of QCD (such as Bjorken sum rule)

- tests of the SM at the quantum loop level that probe
“new physics”

This entire program at the EIC
requires precision electron
polarimetry.
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We propose to develop a
novel continuous non-invasive
polarimeter based on the

spin dependence of
synchrotron radiation (SR)

Log, [Q[GeV]]

Projected uncertainties of future EIC measurements of sin?9,,.




Synchrotron Radiation- “Electronic Light”

After its discovery, the angular and spectral distribution were
worked out in classical E&M
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Synchrotron Radiation- “Electronic Light”

Angular distribution

velocity
dU _e*y*c(1—Bcosd)’ —(1—B*)sin’0cos’ ¢
dtdQ 4mR (1—Bcosd)’

Fory>>1 0~1ly
SR emitted in a very small cone

Lorentz _ .
transformation

For E_ =11 GeV,

vert. size = 90 yrad
i.e. 10m from the
source ~ 1 mm height.
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Quantum Corrections
Exact QED calculations by A.A. Sokolov and |. M.Ternov (1960s)
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Synchrotron Radiation- “Electronic Light”

Quantum Corrections
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But even at lower energies
QED corrections = spin dependence of the radiated power

9 \/3 s = radial quantum #

w
— las . i .
r=r 16112 '[ 1+§ )* LF): Y W, P8 2 B . | = Laguerre func.

For { << 1 and electron spinj,j'=*1

245V3 ., 1-jj i§2+315\/§

55V3_ 64 .

P = PClas[(l_ §+ §2)_(1+.i.]

5
JJE+=E+
24 3 2 9 48 432

JE)+...



Synchrotron Radiation- “Electronic Light”

Quantum Corrections
Exact QED calculations by A.A. Sokolov and |. M.Ternov (1960s)

Classical theory (continuous SR spectrum) valid for
E<<E_,~10°GeV and B<<B_, ~4x10°T

E__:single SR photon carries away all of the electron’'s energy

crit "

But even at lower energies
QED corrections = spin dependence of the radiated power

9 \/3 s = radial quantum #

w
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The Spin Dependence

To the first order in § the difference in SR intensity between polarized and
unpolarized electrons is & = {j ~ 10 for 100 pA, 5.0 GeV electrons




The Spin Dependence

To the first order in § the difference in SR intensity between polarized and
unpolarized electrons is & = {j ~ 10~ for 100 pA, 5.0 GeV electrons

Verified experimentally at the VEPP-4 storage ring in Novosibirsk
Belomesthnykh et al., NIM 227, 173 (1984)
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Fig. 1. The field vs the current in the *snake’. A schematic of
the "snake’ and the field distnbution along its axis are shown
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Fig. 12. The measurement results of the SR-intensity as a function of the degree of polarization of the beam. The field in the *snake”
coincides, in direction, with the storage ring guiding field. At points 2 and b one of the bunches ( ¥, ), was quickly depolarized. The
measurement time at a point is 60 5. The bunch polarization time is 7, =1740+£ 20 5 ({ = 0.726).
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To the first order in § the difference in SR intensity between polarized and
unpolarized electrons is & = {j ~ 10 for 100 pA, 5.0 GeV electrons

Verified experimentally at the VEPP-4 storage ring in Novosibirsk
Belomesthnykh et al., NIM 227, 173 (1984)
An RF field used to

| (et depolarize the electrons

H

o I

Fig. 1. The field vs the current in the *snake’. A schematic of
the "snake’ and the field distnbution along its axis are shown
helow.

3 pole magnetic snake/wriggler ' o ! ’ 5 tuokee

Fig. 12. The measurement results of the SR-intensity as a function of the degree of polarization of the beam. The field in the *snake”
coincides, in direction, with the storage ring guiding field. At points 2 and b one of the bunches ( ¥, ), was quickly depolarized. The
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The spin-flip term contributes only as ~ &

This is responsible for the transverse self polarization of electron beams
in storage rings: called the Sokolov-Ternov effect

Used to produce polarized electrons at various accelerator such as DESY




Longitudinal “Spin Light”

For longitudinally polarized electrons
Power from n_electrons ( ignoring spin flip and all terms O(¢?) )
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Figure 1: Geomettical definitions
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Longitudinal “Spin Light”

For longitudinally polarized electrons
Power from n_electrons ( ignoring spin flip and all terms O(¢?) )

2
(0.4

In, c¢? o y'dy o
P (long)=——-—y°| ———¢dQ(1+*)’[K . (z)+ K (z)+jEy ——K
b% 161T3 Rz -r (1+§ § 2/3 1+0(2 1/3 \/1+0(2 1/3

R = bending radius, y—ﬂ, iiy ; x=yyo; z—i(l +o?)*? K, K,; modified
@, 2B A 2w, Bessel function

vertical angle

An odd function of

- Radiation from longiadinally the vertical angle

polarized electrons ([=1) ﬂ

m Integrated over
/ Horizontalangle 5 yertical angles
- the total SR power
* Hadiation from unpolarized . . .
WY electrons ([ = 0) is spin independent

J
Wy @
Vertical angle

# of photons radiated above and
below the orbital plane are not equal

Figure 1: Geomettical definitions




“Spin Light” - Some Characteristics
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“Spin Light” - Some Characteristics

I
_11 GeV
Horiz. angu?ar range AB =10 mrad

B =4T, =100 A But high rates imply

1% statistics in ~ 10 sec
Assuming lon chambers efficiency ~ 10%
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“Spin Light” - Energy Dependence

At fixed B =4T, 1 =100 pA and A6 =10 mrad
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Conceptual Design
A Source of Spin Light: a 3 pole wiggler
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Horizontal angular acceptance
AB fixed to 10 mrad

_ Constant field
For E, = 11 GeV, spot size = 90 prad type wiggler

i.e. 10m from the source ~ 1 mm dia. better suited
for polarimeter




Conceptual Design

Choosing the B

wriggler
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Is the Wiggler Non-invasive?

Effects of fluctuations related to the quantum nature of SR

(carefully studied for the Jlab recirculating arcs for up to E_= 24 GeV)
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Mean energy of photon =E_= 3hcy*/2R

For E_ =11 GeV, 10 mrad bend and R=10m: n~2,E_=199 keV and
AE/E =2.5x10"°




Is the Wiggler Non-invasive?

Effects of fluctuations related to the quantum nature of SR

(carefully studied for the Jlab recirculating arcs for up to E_= 24 GeV)

Mean # of y emitted
per e per radian =n=20.62E_

AE =Vn E_

Mean energy of photon =E_= 3hcy*/2R

For E_ =11 GeV, 10 mrad bend and R=10m: n~2,E_=199 keV and
AE/E =2.5x10"°

Similarly A8, = E sinQ /E_ = 1.5 x1 0%rad

Depolarization
due to wriggle
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AP _ T (transitthruwriggler) __ Wrig

- 2
T (depol) 98.66(1900R*/E")

~1.1x10° %




“Spin Light” Detector

A Detector of Synchrotron + Spin light (X-rays)

A transparent differential ionization chamber




“Spin Light” Detector

A Detector of Synchrotron + Spin light (X-rays)

A transparent nization chamber

e Split chamber design helps pick out small signal

el Gas — Xe or Ar

Split collector Incident X-mays:

Plate Can handle high rates
Radiation hard

Low dark current/noise
Resolution ~ 5 ym

Wide range of ICs commercially
available

-_|l K. Sato, J. of Synchrotron Rad., 8, 378 (2001)
T. Gog, D. M. Casa, I. Kuzmenko, CMC-CAT@ the APS




“Spin Light” Detector

A Detector of Synchrotron + Spin light (X-rays)

Anization chamber

PeR LS Split chamber design helps pick out small signal
Visible p,prtion can be used to center chamber

-

el Gas — Xe or Ar

Split collector | Incickent X-rays:
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A “Spin Light” Polarimeter
Putting it all together
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Comparing Polarimetry Techniques

Sub-1% polarimetry requires multiple independent measurements of
the beam polarization.

* A Spin-light polarimeter is complimentary to the more popular
Compton & Moller polarimeters.

* It will provide an independent measurement with completely
different systematics

Analyzing power is Analyzing power is Analyzing power is
energy dependent energy dependent energy independent

Target is 100% polarized No target needed Target is <10%
polarized




The Signal

Current mode operation

S1=(N__ - (N'_.-AN"__+ AN")

Vertical beam motion cancels out

T

-AN') - (N .+ AN"__ - AN")

spin

= (N',.- AN

spin

(S1 - S2) = 4AN

spin

(S1+S2)=0

This sum for the two helicities can be used
to separate out the efficiency and B-field
related dilutions.




The Detector R&D Proposal

Stage1: Develop a split plane
differential ionization chamber

Ti/SS shell
(4-5 mm thick)

e Collector1
— Collector2

Anode

feedthroughs

side view of ,
split collector plate Front view of DIC




The Detector R&D Proposal

Stage1: Develop a CCD based ionization
chamber alignment system

CCD optical

assignment system
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The Detector R&D Proposal

Stage1: Test the DIC in the JLab Hall-A Compton
chicane

Fig. 14. The Compton Polarimeter Setup at TINAF Hall A. Total length 15m.




The Detector R&D Proposal

Stage 2: Develop a full prototype spinlight

polarimeter (aset of dual ionization chambers
and a suitable wiggler magnet.)

Activity Year 1 | Year 2 | Year 3
Design and build Vv Vv
prototyvpe DIC
Test DIC in Hall A Vv
Compton beamline
Design CCD based
alignment system
Design and build
set of dual DIC
Build CCD system
Design wiggler magnet
Design slits and collimators
Identify suitable wiggler
magnet at the APS
Select suitable site
to test prototype polarimeter




The Detector R&D Proposal

The collaboration has extensive polarimetry and detector
development experience at DESY, JLab, Mainz, and RHIC.

Grad. Students:
Students & Edward Leggett (MSU) and Valerie Gray (W&M) and
Postdocs MSI student(s) (Stony Brook U., during yrs. 2 and 3)
Post doc: M. Shabestari (MSU, 25% FTE only)
Additional post-doc during 2"!/ 3" yr. desirable

Fundina Request

[tem Year 1 | Year 2 | Year 3 | Total

0.5 Grad Student (MSU) | $17k | $17k | $17k | $51k
0.5 Grad student (W&M) | $17k | $17k | $ 17k | $51k
Equipment $46k | 9$44k | $48k | $138k

Travel $10k | $10k | $10k | $30k

Total 390k | 588k | $92k | $270k




The Detector R&D Proposal

Equipment Total cost
prototype DIC 10000
Split plane electrodes 5000

Electronics for DIC(2 channels)
current amps 8000

High voltage power supplies 10000
V-to-Fs and scalers 15000

VME crate 10000

Single board computer 7000

Gas Handling system 10000
The Dual DICs
Custom dual DICs 12000

with split collector
additional amps 8000

CCD alignment system 25000
Custom beamline vacuum 10000
elements

slits and collimators 8000
Total Equipment Cost 138000

Table 1: Equipment cost breakup




Summary

* Spin light based polarimeter is a viable option for
precision non-invasive polarimetry

* It is based on a well demonstrated concept (for transversely
polarized electrons), the necessary technology is readily
available and widely used in light sources across the world.

* We propose to develop a split plane ionization chamber
and demonstrate proof of principle for longitudinally polarized
electrons using 12 GeV beam at JLab.

* Begin developing a full prototype spin light polarimeter




Possible Locations at an EIC

A 2.5 m long straight section of e-beamline and a 10 m long
free flight path (along the beamline) for SR photons to a set

of DICs

Staging of eRHIC: E_ : 5 -> 30 GeV

All energies scale
proportionally by adding
5RF cavities to the

injector New
detector
ERL: 6 electron beam passes thru
SRF linacs precede (accel) and follow
(decel) e-p/e-A collisions

09183 Eo
07550 Eo
0.8367 Eo
0.5917 Eo
0.6733 Eo
0.4286 Eo
0.5100 Eo
0.2650 Eo
0.3467 Eo
01017 Eo
0.1833 Eo

All magnets would be installed from DAY
ONE and we would be cranking power
supplies up as energy is increasing

Aug. 1-3, 2011; Ajmfar
cost review Jan, 2012

eRHIC design has
evolved fo make
optimal use of existing
RHIC infrastructure,
and to permit
straightforward (multi-
step) upgrades from
Phase 1 to eventual full
electron energy

JeM:  A. Deshpande, EIC Overview & ePHENTX

EIC@RHIC
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