Search For Contact Interactions at HERA

Hayk Pirumov (PI Heidelberg)
On behalf of the H1 Collaboration
HERA Collider and H1 Experiment

- World's only electron proton collider, at DESY, Hamburg.
- Was operating from 1992 to 2007.
- Two collider experiments H1 and ZEUS.
HERA Collider and H1 Experiment

- 2003 – 2007: HERA II data (luminosity upgrade)
- H1 experiment collected about 0.5fb$^{-1}$ data.
Deep Inelastic ep Scattering

Neutral Current Deep Inelastic scattering process:

\[Q^2 = -q^2 = -(k - k') \]

\[x = \frac{Q^2}{2(P \cdot q)} \]

\[y = \frac{P \cdot (k - k')}{P \cdot k} \]

\[s = (p + k)^2 \quad Q^2 = x \cdot y \cdot s \]

\(Q^2 \) is the virtuality of the exchanged boson.

\(x \) is the fraction of proton momentum, carried by the interacting quark.

\(y \) is the fraction of lepton energy transferred in the proton rest frame.
Data are well described by Standard Model.

Standard Model prediction is based on CTEQ6M parton distribution function.

Signs of new physics would be expected at highest Q^2 region.

Four-fermion $eeqq$ contact interactions provide a convenient method to investigate the interference of new fields.
Contact Interactions

- Effective Lagrangian for neutral current vector-like contact interactions:
 (scalar and tensor CI are constrained beyond HERA sensitivity)

\[L_{CI} = \sum_{i,j=L,R} \eta_{ij}^{eq} (\bar{e}_i \gamma_\mu e_i)(\bar{q}_j \gamma^\mu q_j) \]

- 4 possible \(\eta \) coupling coefficients for each \(q \) flavor
- Any particular model can be constructed by appropriate choice of the coupling \(\eta \)
- Models currently tested:
 - compositeness
 - leptoquarks
 - large extra dimensions
 - quark radius
Contact interactions coupling are related to the mass scale via:

\[\eta_{ab}^{eq} = \frac{\pm 4\pi}{\Lambda^2} \]

Different models assume different helicity structure of new interactions, given by a set of \(\eta \) couplings.
95% CL lower limits on Λ compositeness scale between 3.2 – 7.4 TeV.
Leptoquarks

For high mass leptoquarks

\[M_{\text{LQ}} \gg \sqrt{s} \]

virtual leptoquark production (exchange) results in an effective contact interaction type coupling:

\[\eta_{\text{LQ}} \sim \left(\frac{\lambda}{M_{\text{LQ}}} \right)^2 \]

where \(\lambda \) is the leptoquark Yukawa coupling.

BRW classification: 14 different leptoquarks (7 scalar and 7 vector)
Leptoquarks

95% CL lower limits on the mass to coupling ratio for the different types of leptoquarks vary in the range $0.4 - 1.9$ TeV.
Arkani-Hamed-Dimopoulos-Dvali (ADD) model assumes that space-time has 4+n dimensions.

Gravity can propagate into the extra dimensions.

Contribution of graviton exchange to neutral current DIS cross section can be described by an effective contact interaction type coupling:

\[\eta_g \sim \frac{\lambda}{M_s^4} \]

where \(\lambda \) is the coupling strength.
95% CL lower limits on M gravitation scale depending on the sign:

$M_S^+ > 0.90 \text{ TeV}$

$M_S^- > 0.91 \text{ TeV}$
Finite size of the quark can be defined by introducing spatial distribution of the electroweak charge:

\[
\frac{d\sigma}{dQ^2} = \frac{d\sigma^{SM}}{dQ^2} \left(1 - \frac{R^2}{6} \cdot Q^2\right)^2
\]

where \(R \) is root mean squared of the electroweak charge distribution.

Assuming electron point-like 95\% CL upper limit on the quark radius:

\[R < 0.65 \cdot 10^{-18} \text{ m} \]
Summary

- H1 NC data are in a good agreement with the Standard Model predictions.
- Limits on deviations from Standard Model set in different models:
 - Compositeness (3.2 - 7.2 TeV)
 - Leptoquarks (0.4 - 1.9 TeV)
 - Large Extra dimensions (0.90 - 0.91 TeV)
 - Quark Radius ($0.65 \times 10^{-18} m$)
The χ^2 function is used as a measure of agreement between data and different theoretical predictions. The presented form of χ^2 function takes into account correlated systematic uncertainties for the H1 cross section measurements.

$$\chi^2 = \sum_i \frac{\left(\sigma_i^{\text{exp}} - \sigma_i^{\text{theo}} \left[1 - \sum_k \Delta_{ik}^{\text{corr}} (\epsilon_k) \right] \right)^2}{\delta_{i,\text{stat}}^2 \sigma_i^{\text{exp}} \sigma_i^{\text{theo}} \left[1 - \sum_k \Delta_{ik}^{\text{corr}} (\epsilon_k) \right]^2 + \left(\delta_{i,\text{uncorr}} \sigma_i^{\text{theo}} \right)^2} + \sum_k \epsilon_k^2$$

- σ_i^{exp}: experimental cross section in Q^2 bin i
- σ_i^{theo}: theoretical cross section
- $\Delta_{ik} (\epsilon_k)$: effect due to correlated error k for bin i
- $\delta_{i,\text{stat}}$: relative statistical error
- $\delta_{i,\text{uncorr}}$: relative uncorrelated error
- ϵ_1: f_{norm} normalization
- ϵ_2: electron energy scale
- ϵ_3: polar angle uncertainty
- ϵ_4: PDF uncertainty
Limit Estimation

1. Scan through the η. Determine η_{data} from $\chi^2(\eta)$ dependence that will correspond to minimal value of χ^2.

2. For each η a number of MC experiments is performed. For each MC experiment χ_{min}^2 and corresponding η_{mce} is determined.

3. Set the limit at the value of η at which 95% of events would have $\eta_{\text{mce}} > \eta_{\text{data}}$.