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eRD15 : Compton electron detector R&D

• Requirement
– 1% or better electron polarization measurement

(0.5 % for Parity program )

– Best measurement Compton electron detector at 
SLD ( ~0.5%)

• Deliverables
– Simulation to determine signal to background for 

JLEIC baseline Roman Pot and expected accuracy

– Detector R&D for faster detector ( signal at least 
shorter than 100 ns for eRHIC design, improves 
rate capability for JLEIC )

– Test stand at JLab to measure precision 
polarization with the foreseen detector for EIC
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Deliverable estimate for FY 2017

• Simulation
– Implement beam pipe in magnet

– More cross check with old simulation

– Full simulation with Interaction Region and beam pipe

– Run simulation large scale on batch farm will full setup

– Halo modelling

– Model beam laser interaction

– Implement polarization extraction analysis

– Study of systematics and optimization of the setup

– Synchrotron radiation study, detector response to synchrotron photons

• Wakefield Higher Order Mode
– Run first pass simulation and determine if Roman Pot is doable for 

Compton Electron detector

• Test stand
– Procure Amplifier and SAMPIC and setup bench

– Measure detector pulse width on the bench
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Not funded
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Simulation work
Halo background study

Background from IP
Polarization extraction

Contribution from window



Beam halo

• Beam halo profile 

from PEP II design 

report

• Fraction of electrons 

around the main 

beam

• Will have to be 

evaluated for EIC

6
http://slac.stanford.edu/pubs/slacreports/reports07/slac-r-418a.pdf



Simulation background from halo
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• Halo modeled by a double Gaussian distribution using 
beam size from PEPII

• Halo rates for 1 cm (blue) and 2 cm aperture 
( salmon ) 

• Can be used to reevaluate when more realistic halo 
available
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Simulation background from IP
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• Used Pythia event generator at IP
• Transport to Compton Detector
• Preliminary rate is negligible compared to other backgrounds



Compton Electron Det. Rates
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• 10 W Green laser
• 1 A of beam
• Compton and Bremstrahlung assuming 10-9 Torr

Halo 1 cm aperture

Halo 2 cm aperture

Bremstrahlung



Polarization fitting program
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• EIC implementation of Hall C fitting program
( see reference )

• Compton edge and asymmetry fit
• Will be useful to study systematics

Precision Electron-Beam Polarimetry at 
1 GeV Using Diamond Microstrip
Detectors
A. Narayan et al.
Phys. Rev X6 (2016) no.1,011013
http://arxiv.org/abs/arXiv:1509.06642



Compton asymmetry with window
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• Asymmetry with and without 500mm stainless steel 
window in front of detector

No window

500 mm window



Compton asymmetry with window
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• Extracted polarization with and without 
window

• Need to study systematics with high statistics 
to evaluate best accuracy possible

• more realistic geometry

• iterate with Wakefield studies

• Number consistent at 0.5 % level : Roman 
Pot option promising for polarimetry
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Wakefield and impedance studies
CST Roman pot model by Nicola Minafra

• beam couples to all elements from the beamline
• need to determine if each element disturbs the beam
• need to determine how much power is deposited by 

the beam in each elements ( can be significant at high 
current )

• modelling of elements in CST particle studio



Wakefield progress
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Beam at
119 MHz
High
energy
setting
up to
0.75A

Beam at
476 MHz
Low and
medium
energy
setting
up to 3 A

Around 2160 W at 3A at low and medium energy and 540 W at 0.75 A for high energy

Impedance after 10 days of computation



Test during visit at KU

• Kansas University single 
channel amplifier design

• Tested with MCP PMT

• Serve as base for 
multichannel amplifier
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10 ns



Silicon pulsed with laser at 10 MHz
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12 ns

100 ns

Amplifier with silicon detector 
fast enough to separate 

successive sources for eRHIC Linac
Ring at 10 MHz

(New proposal for up to 476 MHz )
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Proposal

for FY2018



Simulation: Study of systematics

• Simulation work by current postdoc Joshua 
Hoskins (University of Manitoba ) at 50 %

• Take advantage of farm setup and fitting to start to 
study systematics
– More realistic design for chamber ( simple plate for 

now )

– Systematic studies for different energies 

– Optimize granularity and channel count

– Study of beam induced background

– Radiation dose including beam induced background

– Iteration with Wakefield optimization

• Final report, paper and documentation
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Beam induced background

• Outgassing from beamline due to 

Wakefield and Synchrotron radiation

(evaluate outgassing and pumping )

• Possible neutron production from 

Synchrotron ( add surrounding walls ) that 

could add to detector and electronics dose
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Ep = 275 GeV

Ee= 10 GeV

New eRHIC ring ring design : beam interaction frequency going from initial RHIC 10 MHz to  

30 MHz with 330 bunches  and 100 MHz with 1320 bunches in a 3.8 km ring
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Main Parameters eRHIC ring-ring for Maximum Luminosity
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CM energy GeV 21.9 

(low)

44.7 

(medium)

63.3 

(high)

p e p e p e

Beam energy GeV 40 3 100 5 100 10

Collision frequency MHz 476 476 476/4=119

Particles per bunch 1010 0.98 3.7 0.98 3.7 3.9 3.7

Beam current A 0.75 2.8 0.75 2.8 0.75 0.71

Polarization % 80 80 80 80 80 75

Bunch length, RMS cm 3 1 1 1 2.2 1

Norm. emitt., hor./vert. μm 0.3/0.3 24/24 0.5/0.1 54/10.8 0.9/0.18 432/86.4

Horizontal & vertical β* cm 8/8 13.5/13.5 6/1.2 5.1/1 10.5/2.1 4/0.8

Vert. beam-beam param. 0.015 0.092 0.015 0.068 0.008 0.034

Laslett tune-shift 0.06 7x10-4 0.055 6x10-4 0.056 7x10-5

Detector space, up/down m 3.6/7 3.2/3 3.6/7 3.2/3 3.6/7 3.2/3

Hourglass(HG) reduction 1 0.87 0.75

Luminosity/IP, w/HG, 1033 cm-2s-1 2.5 21.4 5.9

Max number of bunches :3416 

Number of bunches : 1540 * 2  two macrobunches

with 2.1 ns spacing between electron bunches

Ring 

circumference : 2.4 

km

JLEIC Baseline New Parameters

21
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RP Impedance optimization
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With a bunch length of ~100 ps, the power spectrum of the

beam has a non negligible contribution up to ~ 10 GHz.

This means:

- Details as small as
𝑐

10 GHz
~ 3 cm have to be considered:

very fine mesh is required:

lot of computing power required!

- cut-off frequency for a cilindrical pipe of diameter 8 cm

𝑓𝑐~
1.84 𝑐

𝜋 8 cm
~ 2.2 GHz ≪ 10 GHz:

- different cavities are not decoupled by the beam pipe :

interaction with other equipment has to be considered in

simulations

• check stability with mesh
• geometry optimization
• beam pipe optimization
• study of crosstalk
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Manpower 2018

Individual Institution Percentage in % Task

Alexandre Camsonne Jefferson Lab 20 
Wakefield, general, postdoc 

supervision

David Gaskell Jefferson Lab 5
Geant3, laser system, postdoc 

supervision

Joshua Hoskins U. Manitoba 50 GEMC full simulation

Christophe Royon Kansas U. 5 Detector, electronics, Wakefield

Nicola Minafra Kansas U. 15 Wakefield

Michael Murray Kansas U. 5 Detector, electronics, Wakefield
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FY2018 Budget 

K$ direct

Total Cost
With 

overhead
K$

Cumulative Task

Post doc 35 54.075 54.075 Simulation

Travel 15 23.175 77.25

Minafra 12 18.54 95.79 Wakefield

CST license 7 10.815 106.605 Wakefield

Total 69 106.605
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Budget profiles
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Budget Amount Deliverable

Full 106.605 Simulation , Wakefield

-20 % 85.284
Simulation, partial 

Wakefield

-40 % 63.963 Simulation only



Conclusions
• Full simulation running on farm : high statistics with full setup available

• Realistic polarization extraction program complete

• Effect of thin window negligible at 1 % level

• More accurate Wakefield give 2.2 kW

• KU electronics can handle 10 MHz eRHIC beam structure

• Next proposal :
– Complete simulation

• More realistic geometry of Roman Pot

• Polarization study with window thickness

• Systematic study with strip size

• Systematic study for different beam energies

• Beam induced background

• Dose from beam induced background

– Wakefield
• Optimization of geometry and more realistic model

• Study stability of result with mesh size

• Study of crosstalk with other beamline elements
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Backup



Modeling available for both static vacuum and Photon Stimulated 

Desorption

• Molflow+ and Synrad modeling 

software developed by Roberto 

Kersevan

• Jason Carter, ANL, used 

Molflow+/Synrad to model static and 

dynamic vacuum for APS upgrade 

• CAD designs of beamline are 

combined with pumping speeds and 

outgassing rates of elements yield 

expected pressure
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Magnetic elements in orange, program generated synchrotron fan in green, 
surface hit points in red

• Magnetic elements generate synchrotron rays within 3D space

APS-U storage ring vacuum system design using SynRad/MolFlow+ with photon scattering Jason Carter, AVS 2015 presentation

How SynRad works
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Coupled simulations

• Coupling feature translates SynRad flux density rates (photons/cm2/s) to photon stimulated 
desorption, PSD, outgassing (mbar*L/cm2/s)

• Translations based on conditioning time and PSD yield measurements for various vacuum 
materials

Jason Carter, AVS 2015 presentation



Compton asymmetry

e + g e’ + g’s( )                          e + g e’ + g’s( )

𝑁+−𝑁−

𝑁++𝑁− 𝐸𝑒 , 𝑘𝛾, 𝑘𝛾′ = 𝑃𝑒 ∗ 𝐴(𝐸𝑒 , 𝑘𝛾, 𝑘𝛾′)
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Simulation halo direct hit in detector
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• Need to find position as close to the beam possible
• Make sure zero crossing of the asymmetry is inside of the detector
• Position of the Compton edge and zero crossing highly dependent on 

beam energy
• Need to run for all different energies ( only studied 5 GeV )


