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Outline 

•  Electron beam structure and polarization at MEIC 
•  Compton polarimetry  - experience at JLab 
•  Rates and backgrounds 
•  Proposed R&D – electron detector development 
•  Work plan, proposal request 
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MEIC Beam Structure and Polarization 

Warm large booster 
(up to 25 GeV/c) 

Warm 3-12 GeV  
electron collider ring Medium-energy IPs with 

horizontal beam crossing 

Injector 

12 GeV CEBAF 

Pre-booster 
SRF linac Ion 

source 

Cold 25-100 GeV/c 
proton collider ring 

Three Figure-8 rings  
stacked vertically 

Electron cooling 

•  Storage ring: 748.5 MHz = 1.33 ns bunch structure 
•  3 A at 3 GeV and 130 mA at 12 GeV 
•  2 macrobunches with one polarization 2.3 µs 
•  Every electron bunch crosses every ion bunch 



4 

Electron Beam Time structure 

… … … … 

Empty buckets 1.33ns 
748.5MHz 

Polarization (Up) Polarization (Down) 

bunch train & polarization pattern in the collider ring  

Bunch spacing = 1.33 ns 
Macrobunches with opposite polarization = 2.3 µs long 
 
Average polarization of beam in ring can be measured with single laser helicity 
Polarization of each macrobunch can be determined independently by flipping 
laser helicity 

2.3 µs 2.3 µs 

~100 buckets 
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Compton Polarimetry 
Compton polarimetry ideal 
method for electron polarimetry 
at EIC 
 
à  Photon “target” very thin – no 

impact on electron beam  
à  High precision accessible – 

sub-1% precision has been 
achieved (SLD Compton at 
Stanford Linear Collider and 
HAPPEX-III at JLab) 

Eγmax=3.1 GeV 

Eγmax=290 MeV 

Eγmax=34.5 MeV 

Challenges: 
à  Maximum analyzing power strongly energy dependent 
à  Asymmetry varies significantly as a function of backscattered photon 

energy 



6 

Compton Polarimetry – Experience at JLab 

JLab has built two similar Compton polarimeters in Halls A and C 
à Both have achieved ~1% electron beam polarization measurements 
 
Important design considerations: 
1.  Dipole chicane allows simultaneous measurement of scattered 

electrons and backscattered photons 
2.  Electron-laser collision at center of chicane assures no difference in 

electron spin direction relative to beam before/after chicane 
3.  Continuous electron beam requires high power CW laser system 

due to background issues 

Hall C Compton Layout 
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Compton Electron Detector 

Hall C @ JLab: Diamond microstrips used for electron detector 
 
Analysis employs a 2 parameter fit (polarization and Compton edge) to the 
differential spectrum 
à This has yielded good results à strip width (resolution) is important 
à Zero-crossing must be in acceptance to constrain the fit well 

Dominant systematics related to the interplay between trigger and strip efficiency 
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Laser and Backgrounds 

Green laser 
10 Watts CW 

Historically, Compton 
polarimeters have been 
able to suppress 
backgrounds by matching 
laser pulse structure to 
beam 
 
à Modern CW machines, 

there is little to be gained 
in this manner 

 
With CW lasers/beams, 
backgrounds are too large 
to use conventional laser 

Photon det. 

Electron det.. Bremsstrahlung 

Compton  

Rates and backgrounds: MEIC 
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Laser and Backgrounds 

Green laser 
1 kW FP cavity 

Historically, Compton 
polarimeters have been 
able to suppress 
backgrounds by matching 
laser pulse structure to 
beam 
 
à Modern CW machines, 

there is little to be gained 
in this manner 

 
With CW lasers/beams, 
backgrounds are too large 
to use conventional laser 

Photon det. 

Electron det.. Bremsstrahlung 

Compton  

Rates and backgrounds: MEIC 

à High laser powers 
required (FP cavity) 
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Projected Rates 

Machine Energy Rate (kHz/W/A) Max current (A) Rate kHz/W
MEIC 3 316 3 948
MEIC 5 298 3 894
MEIC 6 290 2 580
eRHIC 6 290 0.05 14.5
MEIC 7 283 1.1 311.3
eRHIC 7 283 0.05 14.15
MEIC 9 269 0.4 107.6
eRHIC 9 269 0.05 13.45
MEIC 11 258 0.18 46.44
eRHIC 11 258 0.05 12.9

Green laser at 1.3 degree crossing angle 

For 1 kW laser system (required for backgrounds) absolute rates = 13 MHz to 
almost 1 GHz   
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Electron Detector Requirements 
•  Segmentation à allows determination of the beam 

polarization with high precision by fitting the spectrum 
•  High rate capability 

–  Scattered electron rates will be very large 
–  Typical “strip” detectors have relatively slow response 

times à large dead time 
–  Integrating mode? 

•  Radiation hard 
–  Dose rates will be on the order of 7-25 krad/hour 
–  Example: Silicon signal/noise smaller by factor of 2 

after 3 MRad 
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Hall C Compton Electron Detector 
Diamond microstrips used to detect scattered electrons 
à Radiation hard: exposed to 10 MRad without significant signal degradation 
à Four 21mm x 21mm planes each with 96 horizontal 200 µm wide microstrips. 
à Rough-tracking based/coincidence trigger suppresses backgrounds  

(D. Dutta Missipi State University) 
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Hall C Compton Electron Detector 

Gain :          200 mV 
           (10x103) x (1.6x10-19) 
 

           = 120 mV / fC 

Diamond detector read out using 
Custom amplifier-discriminator 
(QWAD) 

Output pulse relatively long after 
amplification – time scales of order 1 
µs 
à Diamond intrinsic pulse is faster – 
shaping electronics produces long 
pulse 
à Counting at high rates challenging 
– operate in integration mode? (new 
or modified electronics) 

1 µs 

Test pulse input 

After amplification 

Discriminated output 
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Quartz Detectors 
•  Quartz successfully used in both Halls A and C for 

integrating mode detection 
•  Design for Compton will be based on small quartz 

detector used for PREX experiment in Hall A 
•  Pure Cerenkov 
•  Radiation hard of the order > 1 Grad [S. Ecklund et. al. NIM 

A463, 68 (2001) ] 

•  Integration method 
–  No deadtime correction 
–  Can handle very high rates 
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PREX detector principle 

•  Thin quartz to reduce 
shower 

•  Light collection 
through internal 
reflection 

•  PMT readout in 
integrated mode 

PMT 
Quartz 

electrons 

Cerenkov photons 



16 

Tracking-Integrating Hybrid System 

Compton
electrons

Microstrips

Quartz

Zero
crossing

Quartz detector lacks segmentation, so no “built-in” knowledge of the analyzing 
power from fitting spectrum 
à Will investigate using microstrip detector in tandem with chunk of quartz 
à Periodic measurements at lower luminosity will allow use of strip detector to 

constrain analyzing power 
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Micromegas 
•  R&D for small edge MM detector as alternative to diamond or 

silicon strip detector 
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Bulk Micromegas  

•  Readout similar to 
silicon detector 
• Bulk process to laminate 
• G10 Frame in front of 
readout 
• Gas tightness using 
mylar or kapton 
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Micromegas detector 

HV 

• Side readout 
• Drift electrons are detected on the side by a Micromegas 
• Use fast drift gas and optimize mesh distance to minimize pulse width 
• Detector designed to be easily replaceable 

Micromegas 

Micro horizontal drift chamber 

Top view 

Front view 

Zoomed top view 

Drift HV 
plane 

D
rift electrons 

C
om

pton 
 electron 

Compton  
electron 

distribution 
 on front  

Side view 

Gas  
box 

M
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Roman Pot 

40 cm

66 cm

Pot cavity
detector in
vacuum

Vacuum bellow

Feed-throughsInitial detector tests will be 
done with a modified 
version of the Hall A 
electron detector can 
 
Later tests would be 
facilitated by adding a 
Roman Pot-like system 
 
à Allow easier access to 

detector (no need to 
break vacuum) 

à Swap detectors or 
change configuration 
rapidly 

e- 

Test detector 
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Work Plan 
•  2015 

–  Diamond strip detector: acquire 2 new planes, investigate 
operation in integrating mode (Miss. State, Manitoba) 

–  Quartz detector test (Idaho State, Stony Brook) 
–   Manufacture Micromegas prototype (CEA-Saclay) 

•  2016 
–  Modify electron detector chamber in Hall A (JLab) 
–  Fabricate optimized quartz detector (Idaho State, Stony 

Brook) 
•  2017  

–  Manufacture Roman Pot to facilitate testing multiple 
detectors (rapidly) and test atmospheric gaseous detectors 
(Jefferson Lab) 
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Work break-down 
•  Study optimal detector placement 

–  V. Morozov, F. Lin (JLab) 
•  Detector simulation and testing 

–   A. Camsonne and D. Gaskell (JLab) + graduate student 
•  Diamond detector procurement and fabrication 

–  J. Mammei (Manitoba) with D. Dutta (Mississippi State) 
•  Micromegas protoype 

–  Stephan Aune (CEA Saclay) 
•  Quartz detector 

–   D. McNulty (Idaho State), K. Kumar and S. Riordan (Stony Brook) 
•  FADC readout for quartz detector 

–   G. Franklin and B. Quinn (CMU), W. Deconinck 
•  Electron detector vacuum chamber modifications 

–   (JLab) 
•  Roman pot design 

–   Alexandre Camsonne + designer (JLab) 
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Funding Request 
Year Detector Amount
2015 Diamond strip 45 K$
2015 Micromegas prototype 20 K$
2015 Quartz readout 15 K$
2015 Graduate student 30 K$
2015 Travel fund 15 K$
2015 Total 125 K$
2016 Vacuum Chamber 45 K$
2016 Quartz dedicated integrating detector 20 K$
2015 Graduate student 30 K$
2016 Travel fund 15 K$
2016 Total 110 K$
2017 Roman pot 185 K$
2015 Graduate student 30 K$
2017 Travel fund 15 K$
2017 Total 230 K$
Total 465 K$
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Extra 
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Diamond detector budget 

Item price 
2 Diamond strip planes   25K$ 
Feedthrough   9 K$ 
Vacuum chamber   10 K$ 
Detector holder   2 K$ 
Motion system   8 K$ 
Total   58 K$ 
Overhead   32 K$ 
Total over 2 years  90 K$ 
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Quartz Detector Budget 

Item price 
Semiconductor photosensor 

for vacuum 
  10K$ 

Dedicated quartz pieces   10 K$ 
Detector holder   2 K$ 

Total  22 K$ 
Overhead  13 K$ 

Total over 2 years 35 K$ 
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Micromegas Budget 

Item price 
PCB gerber design   7 K$ 
PCB board   3 K$ 
Mesh   1 K$ 
Supplies   2 K$ 
Connectors  0.5 K$ 
Gas box  0.5 K$ 
Total  13 K$ 
Overhead  7 K$ 
Total over 2 years 20 K$ 
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Possible implementation in low Q2 
Tagger for MEIC 

•  At MEIC, Compton could share chicane with low Q2 
tagger 

•  Laser-electron collisions in middle of chicane assures 
no spin rotation relative to IP 

•  No interference with electron detectors needed for 
low Q2 tagger 

γc 

Laser + Fabry Perot cavity 

e- beam 

Quasi-real  
high-energy photon tagger 

Quasi-real  
low-energy photon tagger 

Electron 
tracking detector 

Photon  
calorimeter 
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eRHIC lepton polarimeter: Location? 

e p 

Polarimeter 
Laser 

laser polarization 
needs to be  
monitored 

Compton 
photon 
detector 

•  Option to measure at IP with empty hadron bunch 
• Measure after dipole in machine ? 
• Dedicated chicane ? 

• Constraint on detector technology for the Gatling gun design : 
detectors signal shorter than 100 ns 
 
( E. Aschenauer ) 
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Ebeam=3 GeV 
I = 1 A 
Laser=532 nm, 1 kW 
Vacuum = 1E-9 
Detector = 9 mm from beam 
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Cavity Design Considerations 

Bremstrahlung 

Halo 
Photon 
detector 
 signal 

Electron 
 detector 
 signal Halo 

2 cm cavity aperture 1 cm cavity aperture 

•  Electron detector further from beam at higher energy à smaller backgrounds 
•  Background is worse for photon detector than elecron detector 
•  Need to pay attention to apertures which can generate background from halo 
•  Understanding halo important à work with CASA to develop reliable model 
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4.2 Estimation of Detector Backgrounds 

100 

10-3 

10-g 

\ 

d2N 
dxdy=exp 

1 

\ 

A = 7.2 x 1O-5 
s, = 3.3 
Sy’ 10 

I 
I 
I Gaussian 
\ beam profile 

Beam 1 
(no tail) 

center \ / 

/ 1 

J 1 
I 

I I I I I 1 
0 10 20 30 

x/ox or yloy 

Fig. 4-X Plot of the beam profiles assumed for the calculation of detector 
backgrounds due to synchrotron radiation. The integral of the background 
Gaussian is about 0.25% of the main beam Gaussian. 

113 
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Halo Model 
dN

dxdy
= e

� x2

2�2
x
� y2

2�2
y + Ae

� x2

2(Sx�x)2
� y2

2(Sy�y)2

Sx=Sy=3.0 

A=1.1E-4 
 
Integrated strength=0.1% 
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•  Highly vertically polarized electron beams are injected from CEBAF 
–  avoid spin decoherence, simplify spin transport from CEBAF to MEIC, alleviate the detector background 

•  Polarization is designed to be vertical in the arc to avoid spin diffusion and longitudinal at 
collision points using spin rotators  

•  Universal spin rotator rotates the electron polarization from 3 to 12GeV  
•  Desired spin flipping is implemented by changing the source polarization 
•  Compton polarimeter is considered to measure the electron polarization  

–  Two long opposite polarized bunch trains (instead of alternate polarization between bunches) simplify the Compton 
polarimetry 

•  Polarization configuration with figure-8 geometry removes electron spin tune energy 
dependence 

•  Continuous injection of electron bunch trains from the CEBAF is considered to  
–  preserve and/or replenish the electron polarization, especially at higher energies, and  
–  maintain a constant beam current in the collider ring 

•  Spin matching in some key regions is considered if it is necessary 

Overview of e− Polarization Strategies 
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… … … … 

Empty buckets Empty buckets 
1.33ns 

748.5MHz 

Polarization (Up) Polarization (Down) 

bunch train & polarization pattern 
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Initial Injection Bunch Pattern  

34 

…… 

200 us    Iave = 82.6 nA  

Macro bunch train 

100 ms (~21740 turns)    

Beam energy Gev 3 5 6 7 9 12 

Beam current A 3 3 2.0 1.1 0.4 0.13 

Injection time min 2.8 2.8 1.9 1.0 0.4 0.12 

"   Such injection bunch pattern needs no upgrade of CEBAF beyond 12 GeV 
upgrade 

…… 

1.33 ns,  748.5 MHz  2.4 pC 

2.3µs,  ~1700 bunches (Iave= 1.8 mA) 
half ring injection 

2.4 pC 1.33 ns, 748.5 MHz 

2.3µs, ~1700 bunches 

…… 

half ring injection 
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"   Therefore, in the MEIC 
–  Bunch-to-bunch variation does not contribute to the uncertainty 
–  One can measure average polarization of each macro bunch train 

•  HERA: 
–  Each ion bunch only sees the same electron bunch  

 
•  MEIC: 

–  Each ion bunch sees all electron bunches 

 

–  No non-colliding bunches 

Polarization Collision Pattern 
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Polarization Measurement 

36 

•  Compton polarimetry: 
–  same polarization at laser as at IP due to zero net bend 

 
•  Spin dancing (using spin rotators): 

–  Experimentally optimize (calibrate)  
     longitudinal polarization at IP 
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Laser + Fabry Perot cavity 

e- beam 

Quasi real  
photon tagger 

Quasi real  
photon tagger 

Electron 
tracking detector 

Photon  
calorimeter 
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forward e- 	
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Schematic drawing of USR 

Illustration of spin rotation by a USR  
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Continuous Injection Option  

37 

Lost or 
Extracted 

P0 (>Pt) 
Pt 

1
0 )1( −+=

injdk

ringrev
equ I

IT
PP

τ

…… 

1.33 ns,  
748.5 MHz  2.4 pC 

2.3µs,  ~1700 bunches 
2.4 pC 

1.33 ns, 
748.5 MHz 

2.3µs, ~1700 bunches 

…… 

…… 

200 us    Iave = 33 nA  250 ms     Pave /P0= 92% 

•  Continuous injection principle 

 
 

•  Low injected current preserves high polarization 
•  One possible injection bunch pattern 

–  Damping time at energy > 5 GeV << 250ms 
–  No beam dump needed 


