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Physics interests

Our Goal : Measurements of global observables in heavy ion
collisions over wide range of rapidity at RHIC

Major interests :

Constraining longitudinal structure of the Initial stages of HICs
Constraining the temperature dependence of shear viscosity

Other interests : iSTAR

Detectors Acceptance

Event-shape-engineering

Forward 25>n>-4.2,
Calorimeter Er (photons,
: : (FCS) hadrons
Chiral Magnetic Effect )
Forward 25>n>-4.2,
Tracking System pr(charged
(FTS) particles)
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Initial state of HICs

Over a decade we have learned a great deal about the transverse
structures of the initial state of Heavy lon collisions
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Initial state geometry and fluctuations

Over a decade we have learned a great deal about the transverse
structures of the initial state of Heavy lon collisions

.-+ 2004  2008-10 2012-14 2016 -

Precision measurements of anisotropy in
the transverse ch-hadron spectra + theory
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ongitudinal structures of the initial state of HICs

The longitudinal structure of heavy ion collisions is largely
unexplored

f)

Most theoretical simulations assume
boost invariance of initial state

Can we lean about the
longitudinal structure of HICs
in the final phase of RHIC ?
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Transport properties of matter formed in HICs

We have made precision measurements of the shear viscosity to
entropy density ratio n/s of the matter formed in HICs
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= viscous hydro

viscous hydro + flow data
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Precision measurements of anisotropy in
the transverse ch-hadron spectra + theory
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Transport properties of matter formed in HICs

We have made precision measurements of the shear viscosity to
entropy density ratio n/s of the matter formed in HICs

= Kinetic theory
= |attice QCD
== AdS/CFT limit

= viscous hydro
+ flow data

LO pQCD
e |

AdS/CFT limit

viscous hydro

n/s near T,

i

V ideal hydro

2000
2002
2004
2006
2008
2010
2012
2014

“...temperature dependence will be v
more tightly constrained by upcoming
measurements...”

Page 22, The 2015 LONG RANGE
PLAN for NUCLEAR SCIENCE

Can we map out the temperature dependence
profile of transport parameters ?
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Transport properties of matter formed in HICs

We have made precision measurements of the shear viscosity to
entropy density ratio n/s of the matter formed in HICs
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viscous hydro + flow data

n/s near T,

1 AdS/CFT limit

V ideal hydro

2000
2002
2004
2006
2008
2010
2012
2014

“...temperature dependence will be v
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Page 22, The 2015 LONG RANGE
PLAN for NUCLEAR SCIENCE

Can we map out the temperature dependence
profile of transport parameters ?
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Limited previous measurements exist at forward rapidity at RHIC
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No data on higher order flow harmonics (vs, v4, v5)& rapidity density
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Existing measurements at forward rapidity
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Existing measurements at forward rapidity

Limited previous measurements exist at forward rapidity at RHIC
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Why do we need wider window of rapidity ?

Dynamics of early time spread over wide range of rapidity

Short-range
Intermediate

‘ - |_ONng-range

System produced in heavy ion collisions have lifetime of ~10 fm
Causality limits signals from different t to spread at different An

Different rapidity window — physics at different times
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Why do we need wider window of rapidity ?

Flow like correlations are early time long-range — large An

Background comes from Jets & non-flow = small An

Voa = (cos(2(¢1(n1) —2(12))))

Inl<1 ~ Au+Au 200 GeV (70-80%) C(An)

0.01 4 Data —e— |
Fit  m—

0.008 Short-Range ; Lk ¥
< Intermediate-range Short-range : .
<" 0.006 I Long-Range Intermediate ] ]
— Long-range : :
0.004 - J J : .
e — E
0.002 Ar]
0 | | | |
0.4 0.8 1.2 1.6 2
An

Precise extraction of flow (azimuthal correlations) requires
measurements over wide window of rapidity
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Why do we need wider window of rapidity ?

High multiplicity events in small collision systems and HICs

Pb+Pb (60-70%) _a p+Pb (High-Multiplicity) P+p (High-Mt.JﬁI.t.inIicity)

d2Npair
Nyiq dAN dAG
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-4
LOng-range two partiCIG TPC+TPC (2001-2012) Future Capabilities
correlations are of N -
primary interest for small | o Jd
collisions system . - . 7
7 7 Z
v = o, e
Unigue opportunity : |
with fSTAR I B R R
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Rapidity provides ways to vary Bjorken X

Proton
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Gluon density inside protons and nuclei changes with x (rapidity)

Testing ground for QCD evolution equations (BK, JIMWLK)

P.Tribedy, RSC meeting for forward upgrade, BNL, 2017



Rapidity provides ways to vary Bjorken X
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Rapidity evolutions — predictions
of non-linear regime of High energy %
QCD effective theory (CGC) @

In Q2

LHC data provide constrains for BK, e

non-perturbative region

JIMWLK, RHIC data will provide test —

Constraining gluon density inside nuclei = smooth transition to EIC physics
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Why study at RHIC is important ?
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Very first attempt from STAR
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Why study at RHIC is important ?

Stronger breaking of boost-invariance —
due to longitudinal fluctuations at RHIC

RHIC — lower energies & Ybeam NUcleon scale fluctuations dominate

Forward and backward going participants

determine the shape of participant zone Because of torque
| and twist effects both
Bozek et.al., arXiv:1011.3354 S :
waciow i Y',":Q‘, v 2 magnitude of flow and

direction change

Peng Huo QM17

n directiol n n direction

vn(11) # Un(m2) U, (m) # Up(n2)

Initial state at low energy is poorly understood, RHIC is ideal
P.Tribedy, RSC meeting for forward upgrade, BNL, 2017 19



3D structure of Initial state physics

Several recent models have been proposed with different underlying
dynamics for longitudinal structure of initial state of HICs

Longitudinal Torqued 3D-Glauber 3D-Glasma
strings fireball

10f  Pb+Pb40-50%

I I I I I I I

— _“
e i _

—10F

-8-6-4-20 2 4 6 8
Ns

Can future measurement discriminate these models ?
What is the scale at which boost invariance is broken ?
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3D structure of Initial state physics

Several recent models have been proposed with different underlying
dynamics for longitudinal structure of initial state of HICs
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Very first attempt from STAR

Measurement from STAR with existing detectors :
Hints of longitudinal de-correlations

x 107
6 | (1093 cos(Uy + 205 — 3W3))- Y T\
4 +% |
000y, |
?l‘) s I_.....‘.'..'...o"O'.‘oooogd > 1 2
° 2t 0o
4 |

o |
Pogp
m¢m®¢¢-> 1 3

40 | <v§v4lcos(2\112 120, — 4@4)> |

2
10 |1Mmmal —e- 20-30% \
M43l ==  STAR Au+Au 200 GeV 2 4
O 1 1 1
0.5 1 15
| An |

Measurement using 300 M event with TPC — could go up to 1.8
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Very first attempt from STAR

Measurement from STAR with existing detectors :
Hint of longitudinal de-correlations
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Constraining temperature dependence of n/s(T)

NT/(e+P)

Viscosity has temperature dependence
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Constraining temperature dependence of n/s(T)

Viscosity has temperature dependence :

NT/(e+P)
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Constraining temperature dependence of n/s(T)

NT/(e+P)

Viscosity has temperature dependence :
RHIC collisions can probe the region of perfect fluidity
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Constraining temperature dependence of n/s(T)

Existing data has large uncertainties to constrain n/s (T)
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First attempt from STAR to constrain n/s (T)

Three particle Ca2a = (cos(2¢1 +2¢2—4¢3))
correlation  Cy35 = (cos(2¢1+3pa—5¢3))
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Other motivations : Event shape engineering
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underway, fSTAR will be ideal
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Other motivations : Jets background studies
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Other motivations : Chiral Magnetic Effect

Magnetic field driven effects are early time phenomena
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Rapidity dependent three particle correlations is essential to
remove background of CME P Unique opportunity with fSTAR
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Summary

Physics Measurements Longitudinal Temperature Mixed flow Event
decorrelation @ dependent Harmonics Ridge Shape
C (4n) transport | correlation Vg and
Detectors Acceptance " n/s(T), C ) " Jet-
¥n (Yasib) &s(T) , studies
e _ZE'S (> T > Good
7 (photons,
(FCS) ha%rons) One of these One of these to have ?ﬁzszf
detectors detectors d
etectors
Forward 2.5>p>-42, necessary necessary needed
Tracking System pr(charged Important Important
(FTS) particles)

fSTAR upgrade at RHIC will provide unique opportunity to :

study the structure of the initial state that leads to breaking of boost
invariance in heavy ion collisions and to explore of the transport

properties of the hot and dense matter formed in heavy ion collisions
near the region of perfect fluidity.
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Backup
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