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Doing this for each fermion in the SM:

This is the “Flavor Hierarchy Problem”



Why “Problem”??



Why “Problem”??
Some would say that the flavor problem is not a problem, since 
the Yukawa couplings are protected by a chiral symmetry.



Why “Problem”??
Some would say that the flavor problem is not a problem, since 
the Yukawa couplings are protected by a chiral symmetry.

dy

d log µ
∝ y



Why “Problem”??
Some would say that the flavor problem is not a problem, since 
the Yukawa couplings are protected by a chiral symmetry.

dy

d log µ
∝ y =⇒

Small couplings remain small:  
“Technical Naturalness”



Why “Problem”??
Some would say that the flavor problem is not a problem, since 
the Yukawa couplings are protected by a chiral symmetry.

dy

d log µ
∝ y =⇒

Small couplings remain small:  
“Technical Naturalness”

The reason there is a problem is that all these couplings 
appear to come from the same physics.  Therefore they should 
all start at the same order of magnitude at some UV scale, and 
the hierarchy should come from RG effects.  This is why gauge 
couplings are not considered hierarchal.
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2HD Types

Type III - Both scalar doublets couple to all 
fermions.

Type II - Scalar doublets split between “up-
type” and “down-type” fermions (SUSY).

Type I - Only one scalar doublet couples to 
fermions.



Hierarchy Pattern

A ≡ ms(mt)

md(mt)
" 21 ,

mb(mt)

md(mt)
" 2.26×A2

B ≡ mc(mt)

mu(mt)
" 431 ,

mt(mt)

mu(mt)
" 0.62×B2

There is a pattern between the 1-2 and the 1-3 
generation case:

If the 1-2 hierarchy was set by              , then we can 
fix the 1-3 hierarchy by generating                 .

tanβ
tan2 β
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Fritzsch, Xing, Phys. Lett. B 353, 114 (1995)

Fritzsch, Xing, Phys. Lett. B 413, 396 (1997)
Fritzsch, Xing, Phys. Lett. B 372, 265 (1996)

−LY =
(
Q̄L[Yu]uRΦ̃ + Q̄L[Yd]dRΦ + L̄L[Y!]!RΦ

)

3 x 3 complex matrices
(not typically diagonal)
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Texture Models

The problem with that is that the “weak isospin 
basis” is not a well-defined basis, so what does 
it mean for some Yukawa couplings to vanish in 
that basis?

By choosing matrix elements carefully, we can 
reproduce both the mass spectrum as well as 
the CKM matrix elements.
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Our Goal
We would like to have a model that:

(A) Solves the hierarchy problem with same- 
sized Yukawa couplings and large            . tanβ

(B) Is flavor-basis independent.



Our Model
−LY =

∑

i=1,2

(
Q̄L[Y

(i)
u ]uRΦ̃i + Q̄L[Y

(i)
d ]dRΦi + L̄L[Y

(i)
! ]!RΦi

)
+ h.c.

Y = Y (1) + Y (2) tanβ is the mass matrix in units of                 .v cos β
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Full 3 Generation SM

det2Y = det2
(
Y (1) + Y (2) tanβ

)
∼ O

(
Y (1)Y (2) tanβ

)

detY = det
(
Y (1) + Y (2) tanβ

)
∼ O

(
(Y (1))3

)

What we need is:

y3 ∼ O(Y (2) tanβ)

y2 ∼ O(Y (1))

y1 ∼ O

(
Y (1)

Y (2) tanβ

)

which implies after a lot of algebra:



Full 3 Generation SM

Sufficient conditions for this to happen:

det2
(
Y (2)Y (2)†

)
= 0

| detY | = | detY (1)|
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For                 :tanβ = 20

ms(mt)

md(mt)
! 1.05 tanβ,

mb(mt)

ms(mt)
! 2.38 tanβ,

mb(mt)

md(mt)
! 2.5 tan2 β

Hierarchy solved!

mc(mt)

mu(mt)
! 21.6 tanβ,

mt(mt)

mc(mt)
! 13.4 tanβ,

mt(mt)

mu(mt)
! 290 tan2 β

requires (for example):

mµ

me
! 10.4 tanβ,

mτ

mµ
! 0.85 tanβ,

mτ

me
! 8.8 tan2 β

|(Y (1)
u )ij |2 ∼ 0.1 Tr

(
Y (2)
u Y (2)†

u

)

can be fixed with a minor amount of tuning.
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33 != 0 Y (2)b =




0 0 0
0 0 0

0 0 y(2)3





This implies an interaction scheme in this basis:
(

u(b)

d(b)

) (
c(b)

s(b)

) (
t(b)

b(b)

)

↖ ↑ ↗ ↑
Φ1 Φ2

This is also true in the mass basis up to corrections 
of size                                        .O(mq2/mq3) ∼ O

(
Y (1)

Y (2) tanβ

)



| detY | = | detY (1)|
This constraint is harder to interpret than in the toy model.  
It now puts several constraints on various Yukawa 
couplings:

Y (1)b
11 Y (1)b

22 − Y (1)b
12 Y (1)b

21 = 0



| detY | = | detY (1)|
This constraint is harder to interpret than in the toy model.  
It now puts several constraints on various Yukawa 
couplings:

Y (1)b
11 Y (1)b

22 − Y (1)b
12 Y (1)b

21 = 0

This can be accomplished (for example) by setting

Y (1)b
11 = Y (1)b

12 = 0



| detY | = | detY (1)|
This constraint is harder to interpret than in the toy model.  
It now puts several constraints on various Yukawa 
couplings:

Y (1)b
11 Y (1)b

22 − Y (1)b
12 Y (1)b

21 = 0

This can be accomplished (for example) by setting

Y (1)b
11 = Y (1)b

12 = 0

However, this is NOT going to remain true in the mass basis.
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One may have                    if one assumes a 
slight hierarchy:                              .

Cabibbo Angle
θ(b→m)
12 ∼ θC

In this scenario, basis (b) can correspond 
to the “weak isospin” basis without 
significant tuning between u and d sectors.

Y (1)b
11 ∼ 0.25Y (1)b

22
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Flavor Physics

−LY = Q̄L[Yu]uRΦ̃1 + Q̄L[Y
(2)
u ]uRΨ̃+ (u → d) + leptons + h.c.

In the mass basis we can write the Yukawa 
Lagrangian as:

Diagonal! Only source of FCNC.

Ψ = Φ2 − Φ1 tanβ = − secβ√
2

(
−
√
2H+

sin ε h0 + cos ε H0 + iA0

)

ε = α− β + π/2 → 0 as mA → ∞

In this “decoupling limit” all FCNC vanish.
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Flavor Physics:              mixingK − K̄
Parameter space is: {                                  }Y (2)

d12, Y (2)
d21, x, y, β, ε, mA

Assuming                   and ignoring phases, mixing is 
dominated by      and we require (for example):

Y (2)
d12 = Y (2)

d21

C4

mA = 20 TeV Y (2)
d12 = 10−4

Assuming               and ignoring phases, mixing is 
sensitive to    and we require (for example):

Y (2)
d12 = 0

ε

mA = 2 TeV Y (2)
d21 = 0.1 ε = 10−5

Always for                                               .tanβ = 20 and mh = 120 GeV
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Discussion
The first condition implies the existence of a special 
basis called “Basis (b)”. 

We can chose this as the WIB, which would allow us to 
realize texture models in a well defined way.

The second condition is much harder to understand 
intuitively and requires further study.

This talk has considered these conditions as axioms, 
but they can also be generated dynamically (Z3 
symmetry; PQ symmetry; ....).
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Future Work
How do these constraints do in forbidding 
dangerous flavor changing decays and CP violation?

Now that Yukawas are the same order of magnitude, 
this could imply changes in Higgs production and 
decay expectations.....

How do these constraints do in generating the full 
CKM matrix structure?



Thank you very much!



Flavoring 2HD Models

det2(Y
(2)Y (2)†) = 0

| det(Y )| = | det(Y (1))|

Type-III 2HD model explains flavor hierarchy (masses, 
CKM matrix) with a large           , as long as two additional 
(flavor basis independent) criteria are met:

tanβ

One Higgs only talks 
to third generation

No pure first 
generation couplings

Constraints are generic and can be used to test or 
generate models of flavor.  FCNC also under control 
in the decoupling limit.
Yukawa structure can lead to potentially interesting 
changes in Higgs production/decay.  Work in progress...
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(
G+ cosβ −H+ sinβ

1√
2

[
v1 + h1 + i

(
G0 cosβ −A0 sinβ

)]
)

Φ2 =

(
G+ sinβ +H+ cosβ

1√
2

[
v2 + h2 + i

(
G0 sinβ +A0 cosβ

)]
)

tanβ ≡ v2/v1

H0 = h1 cosα+ h2 sinα h0 = −h1 sinα+ h2 cosα

v2 = v21 + v22

m2
h0 ≤

(
λ1 cos

4 β + λ2 sin
4 β + 2λ̃ sin2 β cos2 β

)
v2

The physical scalar states are

where and

and
CP even neutral states are

where

When mA,H0,H± → ∞ ⇒ α = β − π/2 .
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Flavor Physics:              mixing
mixing  is described by the effective LagrangianK − K̄

Leff =
1

m2
A

∑

n

Cn(x, y;µ)On(µ)

where: x ≡ m2
h

m2
A

, y ≡ m2
H

m2
A

The operator basis we use is

K − K̄

O1 = (d̄iLγ
µsiL)(d̄

j
Lγµs

j
L) Õ1 = (d̄iRγ

µsiR)(d̄
j
Rγµs

j
R)

O2 = (d̄iRs
i
L)(d̄

j
Rs

j
L) O3 = (d̄iRs

j
L)(d̄

j
Rs

i
L)

Õ2 = (d̄iLs
i
R)(d̄

j
Ls

j
R) Õ3 = (d̄iLs

j
R)(d̄

j
Ls

i
R)

O4 = (d̄iRs
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Flavor Physics:              mixing
The nonzero Wilson coefficients are (ignoring RG 
effects):
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K − K̄
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The nonzero Wilson coefficients are (ignoring RG 
effects):
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In the decoupling limit,                     but       is  finite.  
Thus             mixing can be dangerous unless one of 
the Yukawa couplings vanishes.

C2 = C̃2 = 0 C4

K − K̄

K − K̄


