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Hadron PID: Lepton -ID

Be AST de"'eC"'or' IGYOU"' -I<n<I: proximity focusing -3 <n< 3:e/p

RICH +TPC: dE/dx | <[n|<3:in addition HCal response
. . . I <n<3: Dual-radiator RICH & y suppression via tracking
-3.5<n<3.5:Tracking & e/m Calorimetry (hermetic coverage) [I<n<-3:Aerogel RICH  [n[>3: ECal+Hcal response &

Y suppression via tracking
hadronic calorimeters e/m calorimeters -4<n<4:Tracking (TPC+GEM+MAPS)

=~ ' Technology:
- 2D Projective
Mass-production
sPHENIX

Optimization of Readout:

* Light Collection Schemes

* Radiation Damages, Run |7 600;,0
2

* May need to reconsider design of
FEMC. Run |7

silicon trackers TPC GEM trackers 3T solenoid coils
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Electron Resolution
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Position Dependence of Energy Response
8 GeV Electrons
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Block boundary Light guide boundaries
* Reduce imperfections as much as possible.
* Make the blocks slightly non-projective by tilting
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Optimization (geometry, coupling, length of light quides) of light collection:

Compact scheme with 4 |
SiPMs, which only s
partially covering output | %
area and partially mixed
light due fo short light
guide especially prone to
be non-uniform.
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Fibers bent away from the light guide edges to
minimize losses at edges.

Fibers bent away in the center of the tower to
equalize with corners.

. UV LED Mapping. Uniformity of
Light Collection

g
o
~

........... 670/ ®  syigard 184n=1.4
6.7%

Bicron BC-630 n=1.47

@ Lunisisoln-153

Non-uniformity
o
o
»

. Bicron BC-630 n=1.47 Run 2
. Offset Fiber Bicron BC-630 n=1.47

@  Offset Fiber Lumisil 591 n=1.53

Longer Light Guide

0,04t S E— T W

008 — — — — e o

0.02 —- ................................ ................................. ................................ ............................ ............................. ...................

1 2 3 4 5 6 7
Test #




sPHENIX Tilted Sector Design

Improved uniformity of light collection, reduced effects of block boundaries.
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SiPMs and APDs in Tealistic’ conditions:

Large sample of SiPM exposed in Runl7.
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Forward Preshower (FPS)

EIC,Run 17 STAR IP: |
* 152 SiPM at ~135 cm (since Feb.) ,
* 26 SiPMs at ~45 cm (since April)
 APDs at ~45 cm, (since April)

STAR IP ideal test place for EIC.
Conditions for FEMC in BeAST very close to one
we have in STAR now.

FEMC Runl6,Runl7
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Run 17 data. At a glance, preliminary...

EIC R&D pp500 STAR IP. MPPC S12572-025P. 125 cm from the Beam Line, Z = -750 cm
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EIC R&D pp500 STAR IP. MPPC S13360-6025PE. ~35 cm from the Beam Line, Z = -750 cm
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SiPMs , Neutrons, Light Collection Schemes...

Sensor: Calorimeter
Small Active Area * Light Collection Scheme
Limited # pixels \ / Dynamic Range
Requires:

Multiple Sensors per tower

Eq. Noise = 300 MeV
Run 17 Exposure

Neutrons in IP
Degradation of Response

Is 1t Differential ?

Light Pérfecfly Mixed Light parfially Mixed
* Energy Resolution, term (1/E) * Energy Resolution, term (1/E)
» Loss of Calibration Signals * Energy Resolution, constant term ?

© Increase LY + Consider alternati
+ Focus and Mix Light onsider atrernative

Need to be done for L technologies for high n

HCAL next. (Work in > DTS <37 SEeE flax arec?s. )

progress)  Consider non Si based
sensors for high
resolution calorimetry.
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Next Steps :

» Is degradation of response is the same for sensors located at the same positions?

* Do we see change in Vb and is it the same for different sensors?

» Is degradation of response depends on the shape of the light pulse?

* Noise as a function of AV and gate width, optimal bias V?

* Effect of increased after pulses, trap lifetime and high hit rate case.

* Excess noise factor, by direct comparison of response of HCAL and EMcal to cosmic
muons (exposed/unexposed sensors, both SiPMs and APDs).

* T dependence.

* Prepare two HCAL towers with optimized light collection scheme with dual readout

for Run 18.
* Expose new HPK SiPMs during Run 18.

e SPHENIX, Tilted Sector FNAL Test Run.

* MC HCal optimization.

* MC Neutrons.

* MC Machine background.

* IP design, subsystem integration envelopes.
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Consequences ?

Preliminary results from Runl7 at STAR IP, we see
about 10! n/cm? (eta ~3.75) with small prototypes.
With 2014 readout -> MIP is lost (calibration, primary
tool to track stability). Trivial readout will not work.
Switching from Pb to Fe (reduce neutron flux), relaxing
energy resolution for HCAL.

Switching from SiPMs to APDs (doubling # readout ch.)
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Budget scenario 100% 20% cut 40% cut
Hamamatsu Sensors $15k $7k $0
UCLA Electronics Shop | $6.3k $4.64k $1.69k
(26% overhead included)

UCLA support for students | $15.12k $15.12k $15.12k
(26% overhead included)

Travel (26%  overhead | $12.6k $12.6k $12.6k
included)

Total Direct $42.0k $30.95k $21.76
Total $49.02 $39.36k $29.41k

12




Backup Slides.



