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Scope	of	the	eRD19	project

• Investigate	the	critical	issue	of	backgrounds	
induced	by	the	operation	of	the	machine
• Beam-gas	interactions
• Synchrotron	radiation
• Beam	halo

• Use	simulation	studies	to	provide	first	quantitative	
estimates	and	information	regarding	the	above	
backgrounds	assuming	various	EIC	facility	scenarios
• Provide	critical	information	for	future	
considerations	of	shielding,	etc.
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Overview	of	work	for	current	
period	of	review
• Focus	on	proton	beam-gas	interactions
• Use	currently	available	Monte	Carlo	simulation	codes	
to	model	background	processes
• Dpmjet for	p+A background
• Pythia	for	e+p physics	signal

• Embed	simulated	physics	events	into	full	simulation	of	
the	eRHIC IR	region	and	detector
• EicRoot – our	GEANT	implementation	of	eRHIC and	detectors

• Look	into	impact	and	frequency	of	background	events	
on	the	detector	operation	and	related	analyses
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Baseline	background	simulations
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• Strategy:
• Simulate	stand-alone	p+A collisions	(dpmjet3)
• Displace	vertex	of	collisions	along	the	beam	orbit	in	a	given	IR	setup
• Send	modified	event	record	into	EicRoot and	track	the	produced	
particles	through	the	IR	and	into	the	detector
• Interaction	of	particles	with	magnet	material	is	suppressed	(thus	

suppressing	backscattering)

• Metrics:
• Overall	rate	of	particles	hitting	the	detector
• Probability	of	background	event	overlapping	with	physics	event
• Investigating	what	areas	of	the	detector	get	hit	the	most	and	by	
what	type	of	particle

• p+A cross	section	is	large	compared	to	e+p cross-section
• p+H2 (250	GeV	p)	à 60	mb (not	including	elastic)
• p+Ar (250	GeV	p)	à 600	mb (not	including	elastic)
• e+p (10	x	250	GeV)	à 0.05	mb



Baseline	background	simulations

• Simulate	fixed	target	
p+H2 collisions	(p	at	250	
GeV)
• Choose	H2 because	RHIC	
vacuum	group	claim	that	
at	least	90%	of	residual	
gas	in	pipe	is	H2
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Where	do	background	event	particles	go?
• Track	particles	though	the	magnet	lattice
• Consider	a	particle	to	hit	the	detector	if	a	space	point	for	the	
track	is	found	that	has	simultaneously:
• -4.5	<	z	<	4.5	m
• Radius	from	beamline	>	2	cm	(outside	of	beam	pipe)

• Note	that	we	do	not	have	a	magnet	design	before	the	detector	
(from	the	proton	beam	perspective)
• As	a	first	approximation,	the	setup	downstream	from	the	detector	has	
been	mirrored	through	the	IP

Linac-Ring v3 Ring-Ring v2
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Where	do	background	events	that	hit the	detector	
come	from	(Linac-Ring design)?
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• Shows	a	top	view	of	the	IR
• Plot	the	production	vertex	of	a	background	collision
• Fill	histogram	only if	particle	hits the	detector
• Color	coding	 indicates	number	of	particles/event	hitting	detector
• Most	of	the	particles	hitting	 the	detector	come	from	within	the	beampipe

of	the	detector
• Most	of	the	particles	hitting	 the	detector	have	an	energy	of	50	GeV	or	less



Where	do	background	events	that	hit the	detector	
come	from	(Ring-Ring design)?
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• Shows	a	top	view	of	the	IR
• Plot	the	production	vertex	of	a	background	collision
• Fill	histogram	only if	particle	hits	the	detector
• Color	coding	 indicates	number	of	particles/event	hitting	detector
• Most	of	the	particles	hitting	 the	detector	come	from	within	the	beampipe

of	the	detector
• Most	of	the	particles	hitting	 the	detector	have	an	energy	of	50	GeV	or	less



Geometrical	acceptance	along	z
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Linac-Ring Ring-Ring

• Note	that	no	mask	or	anything	are	in	place
• Simply	have	the	magnet	constructions	 in	the	simulation

• The	bulk	around	the	magnet	is	also	arbitrary	and	needs	to	be	
investigated	with	a	more	realistic	design

• The	acceptance	under	 the	detector	beampipe is	common	 in	both	designs
• The	dips	 in	the	acceptance	are	due	to	the	magnet	apertures



Where	do	the	background	particles	
hit	the	detector	(Linac-ring)?
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• Show	the	hit	distribution	 (in	x,	y,	z)	in	the	detector	for	a	given	range	of	
background	event	vertex	position

• Most	particles	hit	the	barrel	region	of	the	detector



Where	do	the	background	particles	
hit	the	detector	(Ring-ring)?
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• Show	the	hit	distribution	 (in	x,	y,	z)	in	the	detector	for	a	given	range	of	
background	event	vertex	position

• Most	particles	hit	the	barrel	region	of	the	detector
• Significant	number	of	particles	hit	the	detector	endcap
• This	is	a	start	to	look	into	required	shielding
• The	Linac-ring	design	has	shielding	provided	 by	the	magnets	themselves



Calculating	the	rate	of	background	events
• Estimate	the	luminosity	of	background	collisions	using	the	proton	beam	
current	and	the	gas	density

• The	gas	density	is	estimated	from	the	vacuum	at	HERA	of	10-9 mbar	or	
2.65	x	107 molecules/cm3

• gas	density	assumed	uniform	 along	beam	pipe

• Calculated	for	a	gas	length	of	24.50	m

• Bigger	current	means	greater	luminosity	for	background

𝐿 = 	Φ % 𝜌 % 𝑙
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A	word	on	machine	design	plans
• Will	show	results	for	both	linac-ring	and	ring-ring	
designs
• Note	the	difference	between	low	risk/baseline	and	
ultimate	design
• Current	BNL	strategy	is	to	put	forth	the	lowest	risk	
machine	possible	in	both	scenarios	(linac-ring	and	ring-
ring),	and	then	plan	to	upgrade	over	time
• Difference	between	linac-ring	low	risk	and	ultimate	design	is	
the	implementation	of	CeC to	shrink	beam	size	and	increase	
luminosity

• Difference	between	ring-ring	baseline	and	ultimate	is	to	
increase	the	rep.	rate	to	drive	up	the	luminosity	(and	cooling)
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Comparing	overall	background	
rates	to	physics	rates
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• Linac-ring	design	has	a	better	DIS	to	background	 rate	than	ring-ring



Visual	of	the	signal	to	background	rate	ratio	
with	varying	beam	current	and	machine	
luminosity
• Assume	a	gas	density	of	2.65	x	1010 molecules/cm2

over	10m
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Signal	to	background	rate	ratio

RR

LR



Comparing	the	energy	spectra	of	background	
and	DIS	normalized	by	overall	rates

Linac-
ring

Ring-
ring
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Estimate	the	probability	that	a	beam-gas	event	
from	a	bunch	will	enter	the	detector	within	an	
event	timing	window
• Use	previously	described	simulations	to	estimate	the	acceptance	
correction	for	getting	a	background	event
• Require	particles	from	the	background	event	(at	least	one)	entering	the	detector	

volume
• Require	the	time	of	flight	from	the	production	vertex	to	the	detector	volume	be	

within	an	event	timing	window	 (currently	set	to	10	ns)
• The	acceptance	correction	is	then	calculated	by	the	fraction	of	generated	events	that	

make	it	into	the	detector	volume	within	this	time	window

• Calculate	the	number	of	interactions	expected	per	bunch
• Apply	the	correction	to	the	expected	number	of	interactions	per	bunch	
to	estimate	the	number	of	interactions	per	bunch	that	will	produce	
particles	that	enter	the	detector	during	a	beam	crossing

• Use	the	above	number	to	calculate	the	probability	of	a	background	
event	leaving	signal	in	the	detector	during	a	beam	crossing	(assuming	
Poisson	statistics)
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Numbers
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Design	option N_p f_b [MHz] p-beam
rate	[kHz]

Numberof	
interactions	
per	bunch

Number	of
interactions	per	
bunch	in	acc

Linac-ring (base) 3e11 9.4 11 1e-3 5e-4

Linac-ring	(ult) 3e11 9.4 11 1e-3 5e-4

Ring-ring	 (base) 1.11e11 28.2 24.5 9e-4 4e-4

Ring-ring (ult) 5.6e10 114 55.6 5e-4 2e-4

For	beam-gas

For	DIS
Design	option DIS rate	

[kHz]
Numberof	
interactions	
per	bunch

Linac-ring (base) 58 6e-3

Linac-ring	(ult) 700 7e-2

Ring-ring	 (base) 53 2e-3

Ring-ring (ult) 603 5e-3



Summary

• Set	up	code	infrastructure	to	study	beam-gas	effects	for	
different	facility	designs
• Performed	simulations	of	the	background	physics	process	
for	proton	beam-gas	interactions
• Looked	at	where	events	occur	that	contribute	the	most	to	
hits	in	the	detector
• For	two	different	design	options
• Information	can	be	used	to	determine	placement	of	masks/shields

• Quantified	the	rate	of	background	hits	in	the	detector	and	
compared	to	rates	from	DIS	phsyics
• Quantified	the	number	of	interactions	per	bunch	expected	
for	background	collisions	as	well	as	physics	events
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Expected	Future	Improvements

• Include	secondaries produced	from	interaction	with	the	
magnet	bulk,	etc.
• Reconsider	the	physical	size	of	the	magnets	around	the	
aperture

• Repeat	the	study	for	lower	beam	energies
• Fold	in	simulations	with	higher	gas	mass	for	a	realistic	
gas	composition
• Look	more	differentially	into	the	composition	of	the	
particles	and	where	they	hit	the	detector
• Like	photons	from	background	hitting	the	endcap	calos

• Start	pushing	on	synchrotron	radiation	studies
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Backups
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Some	lessons	from	the	HERA	II	upgrade
• Seemed	to	be	a	convoluted	problem	that	combined	heating	of	beam	
pipe	and/or	breaking	of	vacuum	due	to	high	levels	of	synchrotron	
radiation
• Lead	to	dynamic	pressure	increase	à greater	proton	beam-gas	background
• Needed	long	conditioning	 to	clear	out

Dynamic	pressure	increase	due	
to	thermal	and	photo	 desorption

Pressure	vs.	integrated	electron	
current	2002	- 03

Proton	Beam	Gas	Background

Two	time	constants	for	vacuum	conditioning
Ø Short	term	after	leaks	20	– 30	days
Ø Long	term	600	days
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250 GeV protons on Argon

p+H2 and	p+Ar species	distributions
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• 250	GeV	p	beam	in	both	cases



Timing	Distribution	of	Background	
Particles	Hitting	the	Detector
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Where	do	background	events	that	hit the	detector	
come	from?

LRv3

RRv2
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