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emerging picture from DSSV analysis in 2008/09
DSSV: de Florian, Sassot, MS, Vogelsang; PRL101 (2008) 072001; PRD80 (2009) 034030
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indications for non-trivial Au > () surprising strangeness polarization
sea quark polarizations Ad < () sizable SU(3) breaking?

requires reliable kaon fragmentation fcts.
lattice: Bali et al., 0811.0807; 0911.2407; 1011.2194



meanwhile, new data became available ...

« DIS: AP from COMPASS
arXiv:1001.4654

« SIDIS: Al,dT[IK from COMPASS
arXiv:0905.2828

+ SIDIS: A, " from COMPASS
arXiv:1007.4061

extended x coverage w.r.t. HERMES

* how well are we doing ?

* impact on uncertainties ?

* refit/new analysis necessary ?
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coping with new data: DIS AP i
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v' DSSV does a very good job: 15 points, x> = 14.2




coping with new data: SIDIS A,d.™K = s
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coping with new data: SIDIS A,r-™K

o d

COMPASS AP™

X-range
not covered
by HERMES

COMPASS AP

1s* kaon data on p-target
(not available from HERMES)

x% numerology:

COMPASS AT™

— DSSV
—— DSSV refit

=== DNS
w/ DSS FF

--------------------------------

COMPASS AP™

arXiv:1007.4061

L.

DSSV 08  with

data sefs = A padmK
DSSV08 | 392.5 456.4
DSSV+ 453.0

v no refit required
(Ax?=1 does not reflect
faithful PDF uncertainties)

" +rend for somewhat less

2 1

10 10

2 1
10 10

X X

1  polarization of sea quarks:
At — Ad # 0 less significant
6



As revisited: impact of COMPASS data

current value for AZ strongly depends on assumptions on low-x behavior of As

*new COMPASS data support small/positive As(x) at x > 0.01
* they also prefer a sign change at around x=0.01
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As: can we blame it on the fragmentation fcts ?

" . " Leader, Sidorov, Stamenov
recently proposed as a "solution” to the "strange quark puzzle" arXiv:1103.5979

indeed, flavor decomposition strongly depends on fragmentation functions

different FFs == different results but wrong FFs == misleading results

find: only DSS FFs describe underlying unpol. cross sections in the relevant kinematics

of course, this does not guarantee that we extracted the right As: more data are needed
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Ag and the relevance of RHIC data

truncated moment
("RHIC pp region”)

truncated moment
(“high x")

bottom line

* RHIC pp data clearly needed (current DIS+SIDIS data alone do not constrain Ag)
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* new (ST)DIS data do not change much for Ag
*trend for positive Ag at large x (as before)
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FUTURE AVENUES
RHIC & BEYOND



DSSV - readiness for new observables

general policy: NLO must be known for an observable to be included in fit

€0 €

use of improved Mellin technique allows us to included any observable
consistently at NLO accuracy without the usual cheating ("K-factors”, etc)

most promising future avenues at RHIC to further our knowledge of pol. PDFs

focus on
" particle correlations, like di-jets Ag
better control on probed x-range; expect data soon
" rare probes (prompt photons, heavy flavors) A

probe different aspects of hard scattering dynamics (test of factorization)

® W boson parity-violating single spin asymmetries A, Aﬂ) Ad
neat handle on flavor separation; large asymmetries Au’ Ad
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Ag from jet-jet correlations

as presented at DNP'10
® Data Run-6
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de Florian, Frixione, Signer, Vogelsang
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W program @ RHIC: what can we learn?

key measurement at RHIC: parity violating single spin asymmetry
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hew versatile NLO MC code
de Florian, Vogelsang, arXiv:1003.4533

simulated impact of RHIC
W boson data on global fit

v" reduction of uncertainties
for 0.07<x<0.4

v’ can test consistency of
low Q? SIDIS data in
that x regime

v 1st PHENIX & STAR data
no impact on fit yet
“proof of principle”
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opportunities for spin physics studies at an EIC

so far, our knowledge on polarized (SI)DIS is based on fixed target e(oer'lmen’rs

\O
" " w_,. . " 6@99
many “weak spots” & room for new “spin surprises”: 5
oY
" small x region: crucial for all sum rules ("proton spir\n;éq,“gjorken", ..)  unknown
X
AV
" flavor separation: SU(2), SU(3) breaking, s mngness largely unknown
\(‘
" ¢lectroweak effects/structure fcts. (0*‘ never measured
«°(
" full understanding of ‘rr'ansv\q'_z;e, spin phenomena still in early stages
xO
" issues with facTorizg@'XrC(for' Sivers fct. intriguing
RO
" role of orbl‘ml \\‘gular' momentum largely unknown

3e°
" plus: se@i phenomena in diffraction, photoproduction, hadronization, ...

repeat full HERA program in polarized high energy ep scattering

with good particle ID & ability to measure exclusive processes
14



teaser I: what can be achieved for Ag?

current
status:

DSSV global fit

de Florian, Sassoft,

MS, Vogelsang

DSSV N
[ XAg —_ DNS — DSSV Ay*=1
- GRSV

\\4\ -

. DIS

DSSV Ax’=2% 1

””” GRSV maxg RHIC &
L GRSV ming | PP PP 1
107 10" 1

X

pQCD scaling violations
dg1

2
Tog(g7) © ~ 29, @)

0.2

0.1

101

* low x behavior unconstrained
significant polarization still possible
* no reliable error estimate
1
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0
(entering spin sum rule)

0.2
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what can be achieved for Ag? - cont'd

how effective are scaling violations at the EIC
(studies based on simulated data for stage-1 of eRHIC [5x50, 5x100, 5x250, 5x325])
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DSSV+ includes also latest
COMPASS (SI)DISdata O f =
(no impact on DSSV Ag) 03 02 -0.1 -0 0.1 0.2 0.3
Aol [0.0001-1] .
& (one month of running)

“issues”:
* DIS meas. will be limited by systematics: polarimetry, detector performance, rel. lumi, ...
16

* QED rad. corrections known to be large but need to reconstruct true x,Q? very well



what can be achieved for Ag?

what about the uncertainties on the x-shape ...
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- cont'd

similar improvements
can be expected for

all quark flavors by

studying SIDIS
(work in progress)

1
- expect to de‘rer'mine/ dr Ag(z,Q*) at about 10% level (or better - more studies needed)

0

kinematic reach down to x = 104 essential o determine integral
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teaser II: electroweak probes

studies by Deshpande, Kumar, Ringer, Riordan, Taneja, Vogelsang

at high enough Q? electroweak probes become relevant

* neutral currents (y, Z exchange, vZ interference)
* charged currents (W exchange)

parameterized by new structure functions which probe
combinations of PDFs different from photon exchange
--> flavor decomposition without SIDIS, e-w couplings

hadron-spin averaged case: studied to some extent at HERA (limited statistics)

. . . . Wray; Derman; Weber, MS, Vogelsang;
hadron-spin difference: contains Anselmino, Gambino, Kalinowski:
e-w propagators Blumlein, Kochelev; Forte, Mangano, Ridolfi; ...

and couplings

dAc® " 4ra? \AZ, L,

unexplored so far - unique opportunity for the EIC
18



most promising: CC DIS
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(u+¢) + (1 —y)2(d + 3)

_ =

20 x 250 GeV
Q2> 1 GeV?
0.1<y<0.9
10 fb-!
DSSV PDFs

need to be able to reconstruct
X, Q2 from hadronic final-state

separate up-type and down-type
PDF combinations by varying y

/

y)*(Ad + As) — (Au + Ac)
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other opportunities in polarized DIS at the EIC

" . " C Bartels, Ermolaev, Ryskin;
* watch out for "surprises” at small-x = deviations from DGLAP ., 0oy Greco Trgyan

(might set in earlier than in unpol. DIS: [as In?(1/x)]¥; showing up as tension in global fits (?))

* tag on g;"e"™ - irrelevant so far (<< 1%), driven by Ag at small x, NLO in progress kang, Ms

- extract (anti-)strangeness from CC charm production W s’ — ¢ NLO kretzer, Ms

1
* Bjorken sum rule: / dz [¢}(z,Q%) — g1(z,Q%)] = éCBj [2:(Q%)] g4
J0

» Cp; known to O(a,*)  Kodaira; Gorishny, Larin; Larin, Vermaseren; Baikov, Chetyrkin, Kihn, ...
* but not a tool to determine o, (1% change in «, translates in 0.08% change of Bj sum )
- experimental challenge: effective neutron beam (3He), very precise polarimetry, ...

* theor. motivation for precision measurement: Crewther relation
non-trivial relation of two seemingly unrelated quantities

Blas)
~14 K(as)
Adler function D(Q?) in e'fe €—— > Bj sum C;(Q?) in DIS
deviation from J
exact conformal symmetry
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summary & outlook
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@ DSSV analysis of 2008 still in good shape

no official update forthcoming
COMPASS SIDIS data nicely described
may look into uncertainty bands
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@ ready to include di-jet, W boson data, ... at NLO as they become available

@ for the time being, flavor separation depends largely on SIDIS data

s

important to further improve fragmentation functions; DSS global analysis efforts ongoing

to address outstanding questions access to small x is required

having an EIC in the future is essential (the sooner the better)

its c.m.s energy must be sufficiently large to reach x » 10-

we will need o control systematic uncertainties with unprecedented accuracy
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