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Abstract. We report on the results of a recent work [1], where we explore the possibility to con-
struct higher-twist parton distributions in a nucleon at some low reference scale from convolution
integrals of the light-cone wave functions (LCWFs). These WFs provide one with a reasonable
description of both polarized and unpolarized parton densities at large values of the Bjorken vari-
able. Twist-3 parton distributions are then constructed as convolution integrals of qqqg and usual
three-quark WFs.

Higher-twist parton distributions are conceptually very interesting as they go beyond
the simple parton model description and allow one to quantify correlations between the
partons. Unfortunately, they prove to be very elusive. Despite considerable efforts, very
little is known even about the simplest, twist-3 distributions. We tried to make a step in
this direction by using a representation in terms of overlap integrals of light-cone wave
functions, including only Fock states with the minimum (valence) and next-to-minimum
(one extra gluon) parton content.

We borrow the expressions for three-quark wave functions from Ref. [2] which have
been shown [2, 3] to provide one with a good description for quark parton densities at
large x and the nucleon magnetic form factor. The state can be described in terms of the
single LCWF [2, 4]
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The integration runs over all phase space configurations in which the parton plus-
momentum fractions and the transverse momenta sum up to 1 and 0 respectively. For
the (real) function Ψ

(0)
123 we adopt the simple factorized ansatz [2]
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φ(x1,x2,x3)Ω3(a3,xi,k⊥i) . (2)

The transverse momentum dependence is contained in the function ΩN , which is chosen
to have a Gaussian profile and φ(xi) is the leading-twist-3 nucleon distribution ampli-
tude, cf. [1]. Its normalization and shape can be estimated using QCD sum rules and
lattice field theory [8, 9]. The new contribution of our work is the inclusion of the Fock
states with one additional gluon which were considered in [2] on a qualitative level. One
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FIGURE 1. Up- and down quark distributions, xu(x) and xd(x). The black (short dashed) curves
correspond to the GRV parametrizations [10] at the scale µ2 = 1GeV 2. The solid blue curve is our model
prediction taking, the contribution of the valence state alone is shown by dots for comparison.

can show [1], that it is sufficient to consider three independent LCWFs
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For the transverse momenta we consider an analogous, 4-variable, ansatz to Eq. (2) and
adopt the normalization of these new wave functions from a QCD sum rule approach [1].

Having specified the wave functions, we calculate the quark and gluon polarized and
unpolarized parton distributions. As an example, the results for the up- and down-quarks
are shown in Fig. 1. It is seen that this simple approximation captures main features of
parton distributions at large x surprisingly well, although more sophisticated models are
certainly needed for a better quantitative description.

A description of twist-3 observables in the framework of collinear factorization in-
volves quark-antiquark-gluon correlation functions which are defined as matrix elements
of nonlocal (light-ray) three-particle operators. All matrix elements in question can be
expressed in terms of two correlation functions Q

↑(↓)
q (x) defined as
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where the subscript q = u,d stands for quark flavor. Here and below the integration
measure is defined as

∫
Dx =

∫
dx1dx2dx3 δ (∑xi).

The structure function g2(xB,Q2) is given by the sum of the Wandzura-Wilczek (WW)
and genuine twist-3 contributions

g2(xB,Q2) = gWW
2 (xB,Q2)+gtw−3

2 (xB,Q2) . (5)
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FIGURE 2. Left: Experimental results on the proton structure function g2(xB,Q2) compared to our
model calculation at the scale Q2 = 1 GeV2. Right: The twist-3 contributions xgtw−3

2 (xB,Q2) for the proton
compared to the analysis in Ref. [11] (shaded areas). Our model predictions at the scale Q2 = 1 GeV2 and
Q2 = 10 GeV2 are shown by the black solid and dashed red curves, respectively.

The twist-3 contribution gtw−3
2 (xB,Q2) can be written as
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where Q+
q (x) = Q↓q(x)+Q↑q(x)+ (x↔−x). Our results for the full structure function

g2(xB,Q2) are compared to the experimental data in Fig. 2 (left) and, separately, for
the twist-3 contribution to the analysis in Ref. [11] (right). The twist-3 contributions
are shown at the model scale Q2 = 1 GeV2 and after the evolution to a higher scale
Q2 = 10 GeV2, cf. [5] and references therein.

The quark-antiquark-gluon correlation functions considered here are precisely those
responsible for transverse single spin asymmetries (SSA) observed in different hadronic
reactions. The distribution Tq̄Fq(x) introduced in this context in Ref. [5] is expressed in
terms of Q

↑(↓)
q –functions as follows:
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In the framework of collinear factorization, SSAs originate from imaginary (pole) parts
of propagators in the hard coefficient functions. In the leading order, taking a pole part
enforces vanishing of one of the momentum fractions in the twist-3 parton distribution,
and are classified as soft gluon pole (SGP) or soft fermion pole (SFP). Such “pole”
contributions are therefore considered to be main source of the observed asymmetries
and can be estimated from the available experimental data [6, 7].

For definiteness we show the results for the down quark correlators, q = d. Since
our approximation for the nucleon wave function does not contain antiquarks, the Td̄Fd
distribution is nonzero in two triangular regions of its hexagonal support only, cf. Fig. 3.
Moreover, it vanishes at the boundaries of parton regions where one of the momentum
fractions goes to zero, and, hence, both SGP and SFP terms vanish as well. This
property is an obvious artefact of the truncation of the Fock expansion to a few lowest
components: The LCWF of each Fock state vanishes whenever momentum fraction of
any parton goes to zero and the same property holds true for the correlation functions. It
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FIGURE 3. The quark-antiquark-gluon twist-3 correlation function −Td̄Fd(x) at the reference scale
µ2 = 1 GeV2 (left) and µ2 = 10 GeV2 (right).

is easy to see that both the SGP and SFP contributions reappear once QCD evolution is
taken into account [5].

Since our approximation for the nucleon wave function only includes a few lowest
Fock components, and since the LCWF of each Fock state vanishes whenever momen-
tum fraction of any parton goes to zero, both SGP and SFP terms vanish at the scale
where the model is formulated. They are, however, generated by QCD evolution that
brings in multiple soft gluon emission. Our results suggest that realistic dynamical mod-
els of the the twist-3 distributions can be obtained following the GRV-like approach on
the level of WFs, i.e. assuming that the nucleon state at a very low scale can be described
in terms of a few Fock components, including the valence quarks, one additional gluon
and, probably, a quark-antiquark pair, and applying QCD evolution equations.
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