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= How to study “glue” ?
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How can we measure color charge with DIS?
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How can we measure color charge with DIS?
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The Issue With Our Current Understanding
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= Need new approach




Non-Linear QCD - Saturation

BFKL Evolution in x proton
¢ linear :E_ E_ T :%_ T e
4 GXI)IOSiOII of color field? N partons new partons emitted as energy increases

could be emitted off any of the N partons

Regimes of QCD Wave Function
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Non-Linear QCD - Saturation

BFKL Evolution in x proton
* tinear = - =
L4 GXplOSiOﬂ of color field? N partons any 2 partons can recombine into one

Regimes of QCD Wave Function

New: BK/JIIMWLK
based models

Y =In1/x

¢ introduce non-linear effects
¢ = saturation

¢ characterized by a scale Oy(x,A)

¢ arises naturally in the Color Glass
Condensate (CGC) framework




et+A: Studying Non-Linear Effects

Scattering of electrons off nuclei:
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et+A: Studying Non-Linear Effects

Scattering of electrons off nuclei:

Probes interact over distances L ~ (2mn x)-!
For L > 2 Ra ~ A3 probe cannot distinguish
between nucleons in front or back of nucleon

Probe interacts coherently with all nucleons
R~A"

_ay xG(x,07) 1

Q;? s HERA : xG ~— A dependence : xG , ~ 4
JUX 4 \é;c //
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Nuclear “Oomph” Factor ( 0 ;4)2 ~ . Q% (A) /

Pocket Formula: g

Enhancement of Os with A = non-linear QCD regime reached at

significantly lower energy in A than in proton



Nuclear “Oomph” Factor

- Kowalski and Teaney
Phys.Rev.D68:114005,2003

More sophisticated analyses = more detailed picture even exceeding the

Oomph from the pocket formula

(e.g. Kowalski, Lappi and Venugopalan, arXiv:0705.3047; Armesto et al., PRL
94:022002; Kowalski, Teaney, PRD 68:114005)
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Universality & Geometric Scaling

: : A
Crucial consequence of non-linear

evolution towards saturation:

saturation
region

Y =1In1/x

Physics invariant along trajectories
parallel to saturation regime (lines of
constant gluon occupancy)

Scale with Q%/0’ (x) instead of x and
(O? separately

non-perturbative region
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Q. - A Scale that Binds them All ?

Nuclear shadowing: Geometrical scaling

T |||||||| T |||||||| T |||||||| T |||||||| T T TTTTI IIIIII IIIIIIIII IIIIIIII| IIIIIIIII IIIIIIII| IIIIIIIII rrrrrmm
A D - .
I 2F, /AF, - FZA/A scaled

,

proton x 5+

ANO
M e/ AN
). ig lim
aEF
al
di
3
I\ .
u

%

He (NMC) * He (NMC) _
Li (NMC) £ El(%\ll\leé) :
C (NMC) i
Ca (NMC) Ca (NMO) [j
Ca (E665) Ca (E665) ||
Xe (E665) x  Xe (E665)
Pb (E665) *  Pb (E665) ¢

0.4 1 L1l L LIl L e 1 R — 1 1 L ||||II 1 |||||||I | I||||||| | |||||||I L L rrrnnf NN
10° 10” 10” 10” 10" 10’ 0% 10" 10" 100 100 100 10*
X T
Freund et al., hep-ph/0210139

i)




Q, - A Scale that Binds them All ?

Nuclear shadowing:
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Are hadrons and nucle1 wave function universal at low-x ?
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A Truly Universal Regime ?

Small x QCD evolution predicts:
Q2(b) A Q. approaches universal

behavior for a// hadrons and
nuclei
A => Not only functional form f(Q,)

universal but even O, becomes

P
A3 < the same

A.H. Mueller, hep-ph/0301109 W

Radical View:
¢ Nucler and all hadrons have a component of their wave function
with the same behavior
¢ This 1s a conjecture! Needs to be tested
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¢A Landscape and A New Electron Ion Collider
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¢A Landscape and A New Electron Ion Collider
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Electron Ion Collider Concepts

eRHIC (BNL): Add Energy
Recovery Linac to RHIC

E. =10 (20) GeV

E, =100 GeV (up to U)

Vs = 63 (90) GeV

L.,, (peak)/n ~2.9-10° cm= s°!
TPC(2007%) = $700 M

e-cooling
(RHIC

eRHIC
(Linac-Ring)

PHENIX )
Main ERL (2 GeV per pass)

7 Ty,
~E /""' """""'

Four e-beam
passes




Electron Ion Collider Concepts

eRHIC (BNL): Add Energy
Recovery Linac to RHIC

E. =10 (20) GeV

E, =100 GeV (up to U)

Vs = 63 (90) GeV

L.,, (peak)/n ~2.9-10° cm= s°!
TPC(2007%) = $700 M

e-cooling
(RHIC

eRHIC
(Linac-Ring)

PHENIX )
Main ERL (2 GeV per pass)

7 Ty,

Four e-beam
passes

Both allow for polarized e+p collisions !

ELIC (JLAB): Add hadron beam
facility to existing electron facility
CEBAF

E, =9 GeV

E, =90 GeV (up to Au)

Vs =57 GeV

L.,, (peak)/n ~1.6-10° cm= s-!

Electron B
Cooling

ELIC
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EIC Covers Relevant Kinematic Region
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Understanding Glue in Matter ...

... Involves understanding its key properties which 1n turn define
the required measurements:

¢ What is the momentum distribution of the gluons in matter?
¢ What is the space-time distributions of gluons in matter?
¢ How do fast probes interact with the gluonic medium?

¢ Do strong gluon fields effect the role of color neutral
excitations (Pomerons)?
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Understanding Glue in Matter ...

... Involves understanding its key properties which 1n turn define
the required measurements:

¢ What is the momentum distribution of the gluons in matter?

¢ What is the space-time distributions of gluons in matter?
¢ How do fast probes interact with the gluonic medium?

¢ Do strong gluon fields effect the role of color neutral
excitations (Pomerons)?

What system to use?

1. etp works, but more accessible by using e+A (Oomph Factor)
2. have analogs in e+p, but have never been measured in e+A

3. have no analog in et+p




Understanding Glue in Matter ...

... Involves understanding its key properties which 1n turn define
the required measurements:

¢ What is the momentum distribution of the gluons in matter?

» Extract from scaling violation in F>: 0F2/0ln(Q?

» F1 ~as G(x,0?) (BTW: requires Vs scan)

» 2+1 jet rates (needs modeling of hadronization)
» inelastic vector meson production (e.g. J/y)

» diffractive vector meson production ~ [G(x,0?)]?




F, : Sea (Ant1)Quarks Generated by Glue at Low x

,_EIC (10 GeV + 100 GeVin), JLdt = 4A fo~1 F, will be one of the first
%=0.006 measurements at EIC
1 te-e- O -
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\3 1.2 F——rb—— .
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1
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F, at EIC: Measuring the Glue Directly

EIC (10 GeV + 100 GeV), |Ldt= 5/Afb 1/run .
112 e ey Fp TEQUITES VS scan
i 2 —
1 S 1 Oxs=y
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F, at EIC: Integrated over Q-

Here: 1.2

JLdt=4/A fo! (10+100) GeV = (Q%: 13 24 38 5795 17 34 89
= 4/A fb! (10+50) GeV -
1E ° ® ® e @ ®
=2/A fb! (5+50) GeV : At
.. < -
statistical error only (‘96 0.8F
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T 06F
O F
— FGS Statistical errors for
0af [Ldt =10 b1 = 2 year running
=~ LHC RHIC .
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1073 1072 107
X
Syst. studies of F; (A,x,Q?): HKM and FGS are
= G(x,Q?) with great precision "standard"
= distinguish between models shadowing
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How EIC will Address the Important Questions

¢ What is the momentum distribution of the gluons in matter?

¢ What is the space-time distributions of gluons in matter?
¢ How do fast probes interact with the gluonic medium?

¢ Do strong gluon fields effect the role of color neutral
excitations (Pomerons)?
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How EIC will Address the Important Questions

¢ What is the space-time distributions of gluons in matter?
» Various techniques & methods:
» Exclusive final states (e.g. vector meson production p, J/y)
» color transparency > color opacity

» Deep Virtual Compton Scattering (DVCS) y*A — YA

» Integrated DVCS cross-section: opycs ~A%?3

» Measurement of structure functions for various mass numbers A
(shadowing, EMC effect) and its impact parameter dependence




Vector Meson Production

“color dipole” picture

S p. ./ DVCS
“1W\C N 2
Tai (Bine) = Trias(Q)ag (. QP),
P P—4q x=5.8"10",d =.32 fm
> color opacity color transparency

HERA: Survival prob. of vector E

- . < 08 =
mesons (qq pair) as fct. of b 2
extracted from elastic vector ﬁE 0.6
meson production (Munier g ., E
curve: p0, Rogers: J/y) é ————— e T emeay S Muere o

—-— (1/1) S. Munier et. al.
—— Rogers et. al.

Strong gluon fields in center of |
p at HERA (QS ~0.5 Gevz)? 0 01 02 03 04 b%ﬁ\) 06 07 08 09

Note: b profile of nuclei more uniform and Q, ~ 2 GeV?

1
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How EIC will Address the Important Questions

¢ What is the momentum distribution of the gluons in matter?
¢ What is the space-time distributions of gluons in matter?

¢ How do fast probes interact with the gluonic medium?

¢ Do strong gluon fields effect the role of color neutral
excitations (Pomerons)?
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How EIC will Address the Important Questions

¢ How do fast probes interact with the gluonic medium?

» Hadronization, Fragmentation
» Energy loss (charm!)

21




Hadronization and Energy Loss

nDIS:

0 Suppression of high-p, hadrons analogous but weaker than at RHIC

0 Clean measurement in ‘cold’ nuclear matter

Fundamental question:
When do colored partons get neutralized?

Parton energy loss vs.
(pre)hadron absorption

0.6

Energy transfer in lab rest frame
EIC: 10 <v <1600 GeV HERMES: 2-25 GeV

EIC: can measure heavy flavor energy loss

E= 08

| HERMES

Kr final

[ He, Ne prelim.

— absorption

- - energy loss
TN [N T TR TR A

~
N
N
N
~
E \
~

04
Zn

TR I
0.6

0.8

z, = E,/v
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Connection to p+A Physics

F. Schilling, hex-ex/0209001

0 e+A and p+A provide excellent = [
information on properties of gluons 53 [ = Hifit2 —+ CDF data
in the nuclear wave functions - B A L Ey"'#>7 GeV
E (Q%=75 GeV?) 0.035 < £ < 0.095
0 Both are complementary and offer the i It1<1.0 GeV?

opportunity to perform stringent checks
of factorization/universality =

0 Issues:
p+A lacks the direct access to x, Q,

. - 01 _ — H12002 6,> QCD Fit (prel.)
A P | L M L ——
0.1 1
B
- g Breakdown of factorization (e+p
HERA versus p+p Tevatron) seen
—<— A for diffractive final states.
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Charm at EI

EIC:

LI L L L L L L L LB L L L L L LLELILEN LA L L L L LB LB LB BB LB
- ~ f —

18F EIC eA: D'srDsKn 4 F E
< 16F L=5/A fb™!, Vs=63GeV BR(D— Kn)=3.8%] 12 -
C = o) o
6 ME -3 £ ¢
% 12¢ et T T 34 X F
Nl 3 1-;[-1-»1-_[;}'-]-}” il 2%
T 08F Rl S = §0.6:
< osf o 3 %k
B 0%k HERA ep: 1 8 o4f
0.4F L=50pb™1, Vs=297GeV
02F = 0.2

do/Aldn (nb)
o o o = =
B (o] [e0] - N »

o
N

allows multi-differential measurements of heavy flavor

covers and extend energy range of SLAC, EMC, HERA, and
JLAB allowing study of wide range of formation lengths

s [ ‘opowr SIAOAH Uuo paseg
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How EIC will Address the Important Questions

¢ What is the momentum distribution of the gluons in matter?
¢ What is the space-time distributions of gluons in matter?
¢ How do fast probes interact with the gluonic medium?

¢ Do strong gluon fields effect the role of color neutral
excitations (Pomerons)?
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How EIC will Address the Important Questions

¢ Do strong gluon fields effect the role of color neutral
excitations (Pomerons)?

» diffractive cross-section O/ O,

» diffractive structure functions
» shadowing == multiple diffractive scattering ?

» diffractive vector meson production - very
sensitive to G(x,0?)

W (A= VA) x 02[Cal, Q%)
dt |,—g




Diffractive Physics in «+A

£

‘Standard DIS event’

e(k,)
E,/
ey 0

v (q) | |

> X(p,)
P(p,) \I )

Activity 1n proton direction

26




Diffractive Physics in «+A
£

Diffractive event

proton, nuclei

Activity 1n proton direction

HERA/ep: 15% of all events are hard diffractive
Diffractive cross-section O4/0,, In e+A ?

0 Predictions: ~25-40%7?

Look 1nside the “Pomeron”

0 Diffractive structure functions
0 Diffractive vector meson production ~ [G(x,Q?%)]?




Diffractive Structure Function F,P at EIC

JAgeA—eAX _ dral. [(1 s y_2 @ ﬁFD]
1.05 —rrrrm—rrrrm—rrmm—rm - dedQ2dGdt 3204 2 9~ L
" EIC (10+100 GeV) 1
- [Ldt=5/A, b and 5/A, fo 1
I ] X;p = momentum fraction of the
1.00 RO R 8544 pomeron w.r.t the hadron
& [ PR008 = X/Xp |
A =F —= = Distinguish between linear
o 02r ] evolution and saturation models
3 | | = Insight into the nature of pomeron
o I | = Search for exotic objects (Odderon)
018 F———_ _ éu (linear evolution) —
: Au (saturation model) TS \:
"t 10t 1 0> 10° 10

IP

Curves: Kugeratski, Goncalves, Navarra, EPJ C46, 413 »7




Connection to RHIC & LHC Physics

Thermalization:

¢ At RHIC system thermalizes (locally)
fast (10 ~ 0.6 fm/c)

¢ We don’t know why and how? Initial
conditions?




Connection to RHIC & LHC Physics

Thermalization:

¢ At RHIC system thermalizes (locally)
fast (10 ~ 0.6 fm/c)

¢ We don’t know why and how? Initial
conditions?

Jet Quenching:

¢ Refererence: E-loss in cold matter
¢ d+A alone won’t do

e = need more precise handles

¢ no data on charm from HERMES

FF modification
(parton energy loss)

| HERMES

[ Kr final
~ He, Ne prelim.

absorption

- ———  energy loss
1
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Connection to RHIC & LHC Physics

Thermalization: FF modification
(parton energy loss)

¢ At RHIC system thermalizes (locally) R RN
fast (10 ~ 0.6 fm/c)

¢ We don’t know why and how? Initial
conditions?

Jet Quenching: " HERMES

[ Kr final

¢ Refererence: E-loss in cold matter " He, Ne prelim.

absorption

¢ d+A alone won’t do - ——— energy loss

lllllllllllllllll

e = need more precise handles 02 04 06 08
h

¢ no data on charm from HERMES g d+AU > h+X @ 5, = 200 GeV (n =3.2)

% BRAHMS data

Forward Region:
¢ Suppression at forward rapidities

e (Color Glass Condensate ? : e A
e Gluon Distributions ? ' oo ey il
wee CGC [Tuchin et al.]

= CGC [Jalilian-Marian]

1 2 3 4
P, (GeV/g)S




Connection to RHIC & LHC Physics

They Even more crucial at LHC: )
1 Ratios of gluon distribution functions for Pb versus x from different -
models at Q% =5 GeV?2: Lo

09 |
0.8 |
07 L

06 E

Sarcevic

LHC

OIHY

Frankfurt

Armesto

New hijing

4 i
05 |
FOr\' 0.4
4 I
03 L

107°

R} (x,Q%)

1074 1073 1072

(@) B
o nucleon 2\ fl =4,49,9

Accardi et al.,
hep-ph/0308248,
CERN-2004-009-A

rey et al.]
tardi]

]

4 P, (GeV/g)S




Many New Questions w/o Answers ...

From RHIC:

¢ Observe “E-loss” of direct photons
e Are we seeing the EMC eftect?

Au+Au\[s,,, = 200GeV, 0-10% . .
s 1.8 Fermi

smearing
o enhancement

1.6

PH  ENIX PHENIX preliminary
-o-7°
—h— ]]

-=-dir. photon

1.4

1.2

4

M1LL |
IR 1 g

1

0.8

TI[TIT]TITITI‘IITI T llwl

C/D%> , ¢i°+

0.6

A Xe/D - E 665 (1992)[3]

o Ca/D
04} : 10*1
: O Ca/D-NMC (1994

é 3 - o ‘+
Seadingntiregs®eessg? ¢ [[
vy ’Q Y O C/D- NMC (1994)
o b g by e by e b b by m AID —SLAC (1994)14] |

|
107"

8 10 12 14 l18I m . 111 il 1 1 11111l 1 1 IIIII_2
pT(GeVic) 10
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Many New Questions w/o Answers ...

From RHIC:
¢ Observe “E-loss” of direct photons

Many (all?) of these questions cannot be answered
| by studying A+A or p+A alone.

H EIC provides new level of precision:

« Handle on x, Q?
« Means to study effects exclusively

“Hl In short we need ep but especially eA = EIC

« RHIC is dominated by glue = Need to know G(x,Q?)

!!1 1"1 | 4

o Ll 06 Lo

¢ C/D- NMC (1994

m AIID —S‘_AC (1994
Ll L1 1111 L1

[ET I I B 1
6 8 10 12 14 16 18 20
pT(GeVic)

—2
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Spin Physics at the EIC - The Quest for AG

10 e

9R(x,Q?) + C(x)

0.1

0.01

- m E155
A E143
* SMC

25<Q%<7.5GeV?

+ x =0.490

A
I . x=0.735
© HERMES
1 II 1 1 11 11 I 1 1 11 1 1 1 1

6 x X=0.0245 _1 \\\\‘-3\ 1 \\\\\\‘-2\ 1 \\\\\\‘-1\ (NN
| x = 0.0346 10 10= 107
- I T . l

100

1 il
10" 102
Q%(GeV?)

| L
103 104 _

Spin Structure of the Proton
2= A+AG+L tL,

quark contribution AX = 0.3
gluon contribution AG = 1+17?

AG: a “quotable” property of the
proton (like mass, charge)

Measure through scaling violation:

dg, o _ 2
Joz(O%) Ag(x,07)

AG = 7Ag(x,Q2)dx

x=0
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Experimental Aspects at the EIC

NA

4
gm = EIC (eAu) .
N eRHIC (20+100) GeV Y
e/ eRHIC (10+100) GeV

Lines of constant
hadron angle

10° (n = 2.44)

5°(n=23.13)

2° (n = 4.05)

Lines of constant
electron angle
177° (n = -3.64)

178° (n =-3.13)

179° (n = -4.74)
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Experimental Aspects at the EIC

Positron Hemisphere
EM calorimeter end-wall at -360cm

EM barrel calorimeter

covering z=t70cm

EM catcher calorimete
at z=-110cm

EM catcher calorimeter
at z=+110cm

Proton Hemisphere :
EM and hadron calorimeter ~ 4~
end-wall at +360cm

I. Abt, A. Caldwell, X. Liu,
J. Sutiak, hep-ex 0407053

Concepts:

¢ Focus on the rear/forward acceptance and thus on low-x / high-x physics
e compact system of tracking and central electromagnetic calorimetry inside
a magnetic dipole field and calorimetric end-walls outside

105—

EIC (eAu)
eRHIC (20+100) GeV
eRHIC (10+100) GeV

Lines of constant
hadron angle
10° (n = 2.44)

5°(n=23.13)

2° (n = 4.05)

Lines of constant
electron angle
177° (n = -3.64)

178° (n = -3.13)

179° (n = -4.74)
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Experimental Aspects at the EIC

Positron Hemisphere

EM calorimeter end-wall at -360cm ", ‘i'\ [ \‘\ ," A PP S .- ;/ '
B T ‘ \\\\/ Wf&{\\l\\\\\\\\\\\\\\\\’i\\ku”/[///////////////// / / J/2 P
EM barrel calorimeter L o / z i
{ covering z=+70cm T
EM catcher calorimet \:‘u = _ B :
at z=-110cm o -z -

EM catcher calorime

IR
T OO T

at z=+110cm & il
e 5 = .
? RS , =
N s s - = = -
T g - . _ ) - -
AN RN = S N
: T S
Proton Hemisphere JEne v — -

EM and hadron calorimeter

BRRN=2 v/ TN

end-wall at +360cm

N \
\ . ~

L Abt, A. Caldwell, X. Liu, R T = N

J. Sutiak, hep-ex 0407053 J. Pasukonis, B.Surrow, physics/0608290

Concepts:
¢ Focus on the rear/forward acceptance and thus on low-x / high-x physics

e compact system of tracking and central electromagnetic calorimetry inside
a magnetic dipole field and calorimetric end-walls outside

+ Focus on a wide acceptance detector system similar to HERA experiments

e allow for the maximum possible Q2 range. i




Summary

EIC presents a unique opportunity in high energy nuclear physics and

precision QCD physics
et+A

¢ Study the Physics of Strong Color Fields

e Establish (or not) the existence of the
saturation regime

e Explore non-linear QCD
e Measure momentum & space-time of glue

¢ Study the nature of color singlet excitations
(Pomerons)

¢ Test and study the limits of universality (¢A
vS. pA)

Polarized e+p

¢ Precisely image the sea-
quarks and gluons to
determine the spin,
flavor and spatial
structure of the nucleon

¢ Embraced by NSAC in NP Long Range Plan

e Recommendation $30M for R&D over next 5 years
¢ EIC Long Term Goal: Start construction in next decade
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EIC Open Collaboration Meeting

Stony Brook University
7-8 December, 2007

http://web.mit.edu/eicc/SBUO07/index.html



http://web.mit.edu/eicc/SBU07/index.html
http://web.mit.edu/eicc/SBU07/index.html
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Slides




Connection to Other Fields

GPDs  QCD Theory

Hadron Structure SatratioyModels Relativistic :
(JLAB 12 GeV, RHIC-Spin) Color Glass Condensate Heavy lon PhyS|CS
, Non-linearity, (RHIC, LHC & FAIR)
Confinement, Understanding

Valence <> Sea AdS/QCD of Initial Conditions,
Saturation, Energy Loss

ab initio
QCD Calculations .
& Computational e » TGChﬂOlogy Frontier
Development ew ->eneration Examples: beam cooling,
of Instrumentation .

Physics of Strong energy recovery linac,

Caler el Qcb CP Violation polarized electron source,
superconducting RF

Background =
cavities
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Diftractive DIS 1s ...

when the hadron/nuclei remains intact

momentum transfer
> e t=(P-P’P<0
BU diffractive mass of the final state
5 gop M,2 = (P-P+I-I')?
P S
hadron \\\Pﬂ . Q @
: 2P-PVUD) " Mot @
B ~ momentum fraction of the struck parton with respect to the
Pomeron
Xpom = x/B rapidity gap : An = In(1/x,,,)
Xpom ~ Momentum fraction of the Pomeron with respect to the hadron
d4o.eh—>eXh B 47Taem 2

: y?\ D4 2 Y D4 >
dxdQ?d3dt — 3204 [(1—y+2> Fy7(x,Q ,5,t)—5 I (z,Q°,3,t)
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EIC Timeline & Status
NSAC Long Range Plan 2007

0 Recommendation: $6M/year for 5 years for machine and detector
R&D

Goal for Next Long Range Plan 2012

2 High-level (top) recommendation for construction
EIC Roadmap (Technology Driven)

Finalize Detector Requirements from Physics 2008
Revised/Initial Cost Estimates for eRHIC/ELIC 2008
Investigate Potential Cost Reductions 2009
Establish process for EIC design decision 2010
Conceptual detector designs 2010
R&D to guide EIC design decision 2011
EIC design decision 2011
“MOU’s” with foreign countries? 2012

a
a
a
a
a
a
a
a




Why HERA did not do EIC physics?

* ¢A physics:
— Up to Ca beams considered
— Low luminosity (1000 compared to EIC)
— Would have needed ~$100M to upgrade the source to
have more ions, but still the low luminosity
* Polarized e-p physics
— HERA-p ring is not planar
— No. of Siberian snake magnets required to polarize beam
estimated to be 6-8: Not enough straight sections for
Siberian snakes and not enough space in the tunnel for
their cryogenics
— Technically difficult
* DESY was a HEP laboratory focused on the high

energy frontier.




eA From a “Dipole” Point of View

In the rest frame of the nucleus:
Propagation of a small pair, or “color dipole”

r : dipole size

valid in the small-x limit \ / |

Coherence length of virtual photon’s fluctuation intoqq: L~ 1/2m,, x

L>> 2R L << 2R
¢ Physics of strong color fields ¢ Energy Loss
¢ Shadowing ¢ color transparency

¢ Diffraction ¢ EMC effect
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