
Studying the glue which binds 
us all: the needs and 

requirements for an e+A collider 
Matthew A. C. Lamont, BNL

for the EIC Collaboration

• The role of glue in the World
• How to measure the gluon distributions
• eA vs ep and the “Nuclear Oomph” factor

• The EIC machine concepts
• Where we are and where we’re going

Talk Outline
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Glue and the QCD Lagrangian:

• Gluons

➡ Mediators of the strong interaction

➡ Determine essential features of QCD

‣ Asymptotic freedom from gluon loops 

➡ Dominate structure of  QCD vacuum (χSB)

➡ Quenched LQCD gets hadron masses correct to ~ 10%

• >98% of all visible mass due to “emergent” phenomena not 
evident from Lagrangian

- χSB  & Colour Confinement

Action (~energy) density 
fluctuations of gluon-fields 
in QCD vacuum  (2.4 
×2.4× 3.6 fm) (Derek 
Leinweber)

LQCD = q̄(iγµ∂µ −m)q − g(q̄γµTaq)Aa
µ −

1
4
Ga

µνGµν
a

3

What do we know about gluons?
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Glue and the Lagrangian
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• Hard to “see” glue in the low-energy world
➡ Gluon degrees of freedom “missing” in hadronic spectrum 

➡ Constituent Quark Picture?

• From DIS:
➡ Drive the structure of baryonic matter already at medium-x 

• Crucial players at RHIC and the LHC
➡ Drive the entropy

 

sD
0D

sD
D

0K K

–K
uc

sc
dc

cdcu
cs

D

K 0

usds

su sd
du

0D

c

0

ud

Glue and the Lagrangian

Monday, 13 April 2009



Winter Workshop 2009: macl@bnl.gov

• What is the spatial and momentum distribution of gluons in nuclei/nucleons?

• What are the properties of high-density gluon matter?

• How do quarks and gluons interact as they traverse matter?

• What role do the gluons play in the spin structure of the nucleon?
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• Hard to “see” glue in the low-energy world
➡ Gluon degrees of freedom “missing” in hadronic spectrum 

➡ Constituent Quark Picture?

• From DIS:
➡ Drive the structure of baryonic matter already at medium-x 

• Crucial players at RHIC and the LHC
➡ Drive the entropy

How do we get to the answers?
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• Both e+A and p+A provide excellent 
information on properties of gluons in the 
nuclear wave functions

• Both are complementary and offer the 
opportunity to perform stringent checks of 
factorization/universality ⇒

•But:
➡ soft colour interactions between p 

and A before and after the primary 
interaction

F. Schilling, hep-ex/0209001

Breakdown of factorization (e+p 
HERA versus p+p Tevatron) seen 

for diffractive final states.

Accessing the Glue - p+A vs e+A
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e+p/A - DIS Kinematics

• Structure functions:
➡ F2(x,Q2) ⇒ q and q momentum 

distributions

➡ FL(x,Q2) ⇒ gluon momentum distribution

6

Measure of 
resolution 
power or 
“Virtuality”
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momentum 
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No direct information on 
x, Q2 from p+A colllisions !!
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How to Measure the Glue ?
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linear DGLAP evolution ⇒ xG(x,Q2)
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Scaling violation of dF2/dlnQ2 and 
linear DGLAP evolution ⇒ xG(x,Q2)

Important for RHIC and LHC:
Ratios of gluon distribution functions for Pb/p versus x from different 

models at Q2 = 1.69 GeV2:
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The problem with our current understanding

8
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The problem with our current understanding
• Using the Linear DGLAP evolution model:

➡ Weird behaviour of xG at low-x and low 
Q2 in HERA data

‣ xG goes negative !!

‣ xS > xG, though sea quarks come from 
gluon splitting ...

8
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• More severe
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energy “catastrophe”

➡ xG has rapid rise with decreasing x (and 
increasing Q2) ⇒ violation of Froissart 
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What’s the underlying dynamics?
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Non-linear QCD - Saturation

9

proton

N partons new partons emitted as energy increases
could be emitted off any of the N partons
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Non-linear QCD - Saturation

• BFKL: evolution in x

➡ linear

‣ explosion in colour field at low-x
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proton

N partons new partons emitted as energy increases
could be emitted off any of the N partons
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Non-linear QCD - Saturation

• BFKL: evolution in x

➡ linear

‣ explosion in colour field at low-x

• Non-linear BK/JIMWLK equations

➡ non-linearity ⇒ saturation

➡ characterised by the saturation 
scale, QS(x,A)

➡ arises naturally in the Colour 
Glass Condensate (CGC) EFT

9

proton

N partons any 2 partons can recombine into one

Regimes of QCD Wave Function
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Why study e+A instead of e+p?
Scattering of electrons off nuclei: 
Probes interact over distances L ~ (2mN x)-1

For L > 2 RA ~ A1/3 probe cannot distinguish between 
nucleons in front or back of nuclei

⇒ Probe interacts coherently with all nucleons

R ~ A
1/3

10

Enhancing Saturation Effects:

Monday, 13 April 2009
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Enhancing Saturation Effects:

A probe of transverse resolution 1/Q2 (<< Λ2QCD) ~ 1 fm2 
will experience large colour charge fluctuations.  This 
kick experienced in a random walk is the saturation scale.
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The Nuclear “Oomph” factor
More sophisticated analyses ⇒ confirm (exceed) pocket formula 
(e.g. Kowalski, Lappi and Venugopalan, PRL 100, 022303 (2008); Armesto et al., PRL 
94:022002; Kowalski, Teaney, PRD 68:114005)

11
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Key Measurements in e+A
• Momentum distribution of gluons xG(x,Q2)

➡ Extract via scaling violation in F2: δF2/δlnQ2

➡ Direct measurement: FL ~ xG(x,Q2) (requires √s scan)
➡ 2+1 jet rates 
➡ Inelastic vector meson production (e.g. J/ψ)
➡ Diffractive vector meson production ~ [xG(x,Q2)]2

12
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Example of Key Measurements: 

HKM and FGS are "standard" 
shadowing parameterizations that are 
evolved with DGLAP

FL ~ αs xG(x,Q2)
requires √s scan, Q2/xs = y

Here: 
∫Ldt = 4/A fb-1  (10+100) GeV
    = 4/A fb-1  (10+50) GeV
    = 2/A fb-1  (5+50) GeV

statistical error only

Syst. studies of FL(A,x,Q2): 
• xG(x,Q2) with great precision 
• Distinguish between models

x

G
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/G
d(
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Statistical errors for

∫Ldt = 10 fb-1 ≈ 2 year running
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Preliminary FL measurements
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Key Measurements in e+A
• Momentum distribution of gluons G(x,Q2)

➡ Extract via scaling violation in F2: δF2/δlnQ2

➡ Direct measurement: FL ~ xG(x,Q2) (requires √s scan)
➡ 2+1 jet rates 
➡ Inelastic vector meson production (e.g. J/ψ)
➡ Diffractive vector meson production ~ [xG(x,Q2)]2
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➡ 2+1 jet rates 
➡ Inelastic vector meson production (e.g. J/ψ)
➡ Diffractive vector meson production ~ [xG(x,Q2)]2

• Space-time distributions of gluons in matter
➡ Exclusive final states (e.g. vector meson production ρ, J/ψ)
➡ Deep Virtual Compton Scattering (DVCS)  - σ ~ A4/3

➡ F2, FL for various A and impact parameter dependence
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Key Measurements in e+A
• Momentum distribution of gluons G(x,Q2)

➡ Extract via scaling violation in F2: δF2/δlnQ2

➡ Direct measurement: FL ~ xG(x,Q2) (requires √s scan)
➡ 2+1 jet rates 
➡ Inelastic vector meson production (e.g. J/ψ)
➡ Diffractive vector meson production ~ [xG(x,Q2)]2

• Space-time distributions of gluons in matter
➡ Exclusive final states (e.g. vector meson production ρ, J/ψ)
➡ Deep Virtual Compton Scattering (DVCS)  - σ ~ A4/3

➡ F2, FL for various A and impact parameter dependence

• Interaction of fast probes with gluonic medium?
➡ Hadronization, Fragmentation
➡ Energy loss (charm, bottom!)

14
Monday, 13 April 2009



Winter Workshop 2009: macl@bnl.gov 15

Hadronization and Energy Loss

Monday, 13 April 2009



Winter Workshop 2009: macl@bnl.gov 15

Hadronization and Energy Loss
nDIS: 
• Clean measurement in ‘cold’ nuclear 

matter

Monday, 13 April 2009



Winter Workshop 2009: macl@bnl.gov 15

Hadronization and Energy Loss
nDIS: 
• Clean measurement in ‘cold’ nuclear 

matter

• Suppression of high-pT hadrons 
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Hadronization and Energy Loss
nDIS: 
• Clean measurement in ‘cold’ nuclear 

matter

• Suppression of high-pT hadrons 
analogous but weaker than at RHIC 

Fundamental question: 
When do coloured partons get neutralized?

Parton energy loss vs. 
(pre)hadron absorption

zh = Eh/ν

Energy transfer in lab rest frame:
EIC: 10 < ν < 1600 GeV    HERMES: 2-25 GeV

EIC: can measure heavy flavour energy loss  
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Hadronization and Energy Loss

zh = Eh/ν
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Charm at an EIC

• EIC:  allows multi-differential measurements of heavy flavour

• covers and extends energy range of SLAC, EMC, HERA, and JLAB 
allowing for the study of wide range of formation lengths

Based on H
V

Q
D

IS m
odel, J. Sm

ith
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Key Measurements in e+A
• Momentum distribution of gluons G(x,Q2)

➡ Extract via scaling violation in F2: δF2/δlnQ2

➡ Direct measurement: FL ~ xG(x,Q2) (requires √s scan)
➡ 2+1 jet rates 
➡ Inelastic vector meson production (e.g. J/ψ)
➡ Diffractive vector meson production ~ [xG(x,Q2)]2

• Space-time distributions of gluons in matter
➡ Exclusive final states (e.g. vector meson production ρ, J/ψ)
➡ Deep Virtual Compton Scattering (DVCS)  - σ ~ A4/3

➡ F2, FL for various A and impact parameter dependence
• Interaction of fast probes with gluonic medium?

➡ Hadronization, Fragmentation
➡ Energy loss (charm!)

• Role of colour neutral excitations (Pomerons)
➡ Diffractive cross-section σdiff/σtot (HERA/ep: 10% , EIC/eA: 30%?)      
➡ Diffractive structure functions and vector meson production
➡ Abundance and distribution of rapidity gaps
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Diffractive Physics in e+A
‘Standard DIS event’

Activity  in proton direction
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Diffractive Physics in e+A
Diffractive event

Activity  in proton direction• HERA/ep: 15% of all events are hard diffractive
• Diffractive cross-section σdiff/σtot in e+A ?
➡ Predictions: ~25-40%?      

?

Curves: Kugeratski, Goncalves, 
Navarra, EPJ C46, 413
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Diffractive Physics in e+A
Diffractive event

Activity  in proton direction• HERA/ep: 15% of all events are hard diffractive
• Diffractive cross-section σdiff/σtot in e+A ?
➡ Predictions: ~25-40%?      

• Look inside the “Pomeron”
➡ Diffractive structure functions
➡ Exclusive Diffractive vector meson production: dσ/dt ~ [xG(x,Q2)]2 !!

?
momentum transfer:

t = (P-P’)2P’
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Diffractive Physics in e+A
Diffractive event

• HERA/ep: 15% of all events are hard diffractive
• Diffractive cross-section σdiff/σtot in e+A ?
➡ Predictions: ~25-40%?      

• Look inside the “Pomeron”
➡ Diffractive structure functions
➡ Exclusive Diffractive vector meson production: dσ/dt ~ [xG(x,Q2)]2 !!

?

• Distinguish between linear evolution and saturation models

Curves: Kugeratski, Goncalves, 
Navarra, EPJ C46, 413

momentum transfer:
t = (P-P’)2P’

`

xIP = mom. fraction of 
pomeron w.r.t. hadron
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Diffractive Physics at an EIC

20

Generated 106 e+p events using RAPGAP 
for a variety of proposed EIC energies
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Generated 106 e+p events using RAPGAP 
for a variety of proposed EIC energies

• Significant coverage in x-Q2 
➡ increases by ~ order of magnitude 

over EIC energies
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Diffractive Physics at an EIC

20

rapidity
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e+p: RAPGAP: MFP in Event
2+100 GeV - DIS
5+100 GeV - DIS
10+100 GeV - DIS
20+100 GeV - DIS
30+100 GeV - DIS
2+100 GeV - Diff
5+100 GeV - Diff
10+100 GeV - Diff
20+100 GeV - Diff
30+100 GeV - Diff

Generated 106 e+p events using RAPGAP 
for a variety of proposed EIC energies

• Significant coverage in x-Q2 
➡ increases by ~ order of magnitude 

over EIC energies

• Plotted the distribution of the Most 
Forward Particle in the event for 
DIS and Diffractive events
➡ significant gap between two 

classes of events
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-110 e+p: RAPGAP: MFP in Event

30+100 GeV

DIS:Diff - 90:10

Generated 106 e+p events using RAPGAP 
for a variety of proposed EIC energies

• Significant coverage in x-Q2 
➡ increases by ~ order of magnitude 

over EIC energies

• Plotted the distribution of the Most 
Forward Particle in the event for 
DIS and Diffractive events
➡ significant gap between two 

classes of events

• Reproduce well the “ZEUS” plot
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e+p: RAPGAP

2+100 GeV - Purity

5+100 GeV - Purity

10+100 GeV - Purity

20+100 GeV - Purity

30+100 GeV - Purity

2+100 GeV - Efficiency

5+100 GeV - Efficiency

10+100 GeV - Efficiency

20+100 GeV - Efficiency

30+100 GeV - Efficiency

• Significant coverage in x-Q2 
➡ increases by ~ order of magnitude 

over EIC energies

• Plotted the distribution of the Most 
Forward Particle in the event for 
DIS and Diffractive events
➡ significant gap between two 

classes of events

• Reproduce well the “ZEUS” plot

• Important - plot the efficiency vs 
purity 
➡ Can place a cut in rapidity for 

~90% efficiency and ~90% 
purity !!

Effic: frac of Diff events out of all Diff events
Purity: frac. Diff events out of all events
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Diffractive Physics at an EIC - Acceptance

21
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Purity - 66:34

Purity - 90:10

Efficiency - 1:1

Efficiency - 66:34

Efficiency - 90:10

Effic: frac of Diff events out of all Diff events
Purity: frac. Diff events out of all events
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Diffractive Physics at an EIC - Acceptance
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e+p: RAPGAP

2+100 GeV

Purity - 1:1

Purity - 66:34

Purity - 90:10

Efficiency - 1:1

Efficiency - 66:34

Efficiency - 90:10

• ZEUS had a gap in detector 
coverage (acceptance) of ~ 3 units.

• Studied this effect in the MFP 
distribution for EIC energies:

Effic: frac of Diff events out of all Diff events
Purity: frac. Diff events out of all events
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• ZEUS had a gap in detector 
coverage (acceptance) of ~ 3 units.

• Studied this effect in the MFP 
distribution for EIC energies:

• Keeping the 90% Purity level has 
the following effect:

• 1 unit cut in rapidity
➡ Efficiency falls by factor of 2, 

rapidity moves 2 units to right

Effic: frac of Diff events out of all Diff events
Purity: frac. Diff events out of all events
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Efficiency - 90:10

• ZEUS had a gap in detector 
coverage (acceptance) of ~ 3 units.

• Studied this effect in the MFP 
distribution for EIC energies:

• Keeping the 90% Purity level has 
the following effect:

• 1 unit cut in rapidity
➡ Efficiency falls by factor of 2, 

rapidity moves 2 units to right

• 2 unit cut in rapidity
➡ Efficiency falls by a factor of 4, 

rapidity cut moves farther to right !!

Effic: frac of Diff events out of all Diff events
Purity: frac. Diff events out of all events
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• ZEUS had a gap in detector 
coverage (acceptance) of ~ 3 units.

• Studied this effect in the MFP 
distribution for EIC energies:

• Keeping the 90% Purity level has 
the following effect:

• 1 unit cut in rapidity
➡ Efficiency falls by factor of 2, 

rapidity moves 2 units to right

• 2 unit cut in rapidity
➡ Efficiency falls by a factor of 4, 

rapidity cut moves farther to right !!

• When designing a detector, it is essential 
to be as hermetic as possible !!!

Effic: frac of Diff events out of all Diff events
Purity: frac. Diff events out of all events

Monday, 13 April 2009



Winter Workshop 2009: macl@bnl.gov

ZEUS BPC 1995

ZEUS SVTX 1995

H1 SVTX 1995

HERA 1994

HERA 1993

NMC

BCDMS

E665

SLAC

CCFR

10
-1

1

10

10
2

10
3

10
4

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

x

Q
2

Ve
G( 

2
)

22

Requirements for an Electron Ion Collider
Well mapped in e+p
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Requirements for an Electron Ion Collider
Well mapped in e+p

Not so for ℓ+A (ν+A)
• many with small A
• low statistics
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Requirements for an Electron Ion Collider
Well mapped in e+p

Electron Ion Collider:

• L(EIC) > 100 × L(HERA)
• Electrons

- Ee = 3 - 20 GeV
- polarized

• Hadron Beams
- EA = 100 GeV
- A   = p → U
- polarized p & light ions

Not so for ℓ+A (ν+A)
• many with small A
• low statistics

NMC

BCDMS

E665

SLAC

CCFR

1
=y

10
-1

1

10

10
2

10
3

10
4

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

x

Q
2

Ve
G( 

2
)

20 GeV + 100 GeV/n

10 GeV +100 GeV/n

9 GeV + 90 GeV/n

EIC e+Au

Monday, 13 April 2009



Winter Workshop 2009: macl@bnl.gov 22

Requirements for an Electron Ion Collider
Well mapped in e+p

Terra incognita:     small-x, Q ≤ Qs
                              high-x, large Q2

Electron Ion Collider:

• L(EIC) > 100 × L(HERA)
• Electrons

- Ee = 3 - 20 GeV
- polarized

• Hadron Beams
- EA = 100 GeV
- A   = p → U
- polarized p & light ions

Not so for ℓ+A (ν+A)
• many with small A
• low statistics

NMC

BCDMS

E665

SLAC

CCFR

1
=y

10
-1

1

10

10
2

10
3

10
4

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

x

Q
2

Ve
G( 

2
)

20 GeV + 100 GeV/n

10 GeV +100 GeV/n

9 GeV + 90 GeV/n

EIC e+Au

Monday, 13 April 2009



Winter Workshop 2009: macl@bnl.gov 22

Requirements for an Electron Ion Collider
Well mapped in e+p

Terra incognita:     small-x, Q ≤ Qs
                              high-x, large Q2

Electron Ion Collider:

• L(EIC) > 100 × L(HERA)
• Electrons

- Ee = 3 - 20 GeV
- polarized

• Hadron Beams
- EA = 100 GeV
- A   = p → U
- polarized p & light ions

Not so for ℓ+A (ν+A)
• many with small A
• low statistics

1
=y

10
-1

1

10

10
2

10
3

10
4

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

x

Q
2

Ve
G( 

2
)

20 GeV + 100 GeV/n

10 GeV +100 GeV/n

9 GeV + 90 GeV/n

EIC e+Au

Q 2
s  proton

Q 2
s  Ca (central)

 Q 2
s  Au (central)

Monday, 13 April 2009



Winter Workshop 2009: macl@bnl.gov 22

Requirements for an Electron Ion Collider
Well mapped in e+p

Terra incognita:     small-x, Q ≤ Qs
                              high-x, large Q2

Electron Ion Collider:

• L(EIC) > 100 × L(HERA)
• Electrons

- Ee = 3 - 20 GeV
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• Hadron Beams
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- A   = p → U
- polarized p & light ions
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• many with small A
• low statistics
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EIC Collider concepts
eRHIC (RHIC/BNL): 
Add Energy Recovery Linac
Ee = 10 (20) GeV
EA = 100 GeV (up to U)
√seN = 63 (90) GeV
LeAu (peak)/n ~ 2.9·1033 cm-2 s-1

 
 

  

PHENIX

New EIC Detector

 

STAR 

e-cooling
 

Four e-beam passes
 

 
 

 

5 GeV e+ 
storage ring

 

Energy-Recovery Linac

(3.9 GeV/pass)

 

Low energy e-beam pass
 

RHIC/eRHIC
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Electron 
Cooling

Snake

Snake

IR

IR

ELIC (CEBAF/JLAB): 
Add hadron machine
Ee = 9 GeV
EA = 90 GeV (up to Au)
√seN = 57 GeV
LeAu (peak)/n ~ 1.6·1035 cm-2 s-1
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Staged Approach to an EIC (MEeIC)
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Staged Approach to an EIC (MEeIC)

24

• Q) Is it possible to build an EIC in stages

➡ Must be driven by physics considerations, re-usable in main EIC

➡ Must be low cost ~$100m
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Staged Approach to an EIC (MEeIC)

24

Polarized
Electron 
Source

10 MeV
Linac

Beam
Dump

80 MeV
ERL

Main ERLs; 6 cryostats x 6 cavities x 18.1 Mev/cav = 0.652 MeV per linac

DXDX

4 GeV pass 90 MeV pass

3 recirculating passes:
0.74,  2.05,  3.35 GeV2 recirculating passes:

1.39 and 2.70 GeV

D0, Q1,Q2,Q3

IR2 area

• Q) Is it possible to build an EIC in stages

➡ Must be driven by physics considerations, re-usable in main EIC

➡ Must be low cost ~$100m

• 4 GeV electrons with warm magnets (< 2T)

➡ requires some (small) tunnel reconstruction
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Staged Approach to an EIC (MEeIC)
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Status of the EIC Project:
• The Electron Ion Collider (EIC) White 

Paper
• The GPD/DVCS White Paper
• Position Paper: e+A Physics at an 

Electron Ion Collider
• The eRHIC machine: Accelerator 

Position Paper
• ELIC ZDR Draft 

Available at:

•  NSAC LRP2007 home page

•  Rutgers Town Meeting page

• http://web.mit.edu/eicc
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What is happening now

• EIC “Collaboration” formed in 2007
➡ Bi-Annual collaboration meetings
‣ Last meeting, 11th - 13th December, 2008, LBNL 

‣ Next meeting, May 2009, GSI

• INT

➡ Week long workshop - October 2009

➡ 3-month programme just approved - Autumn 2010

• e+A working group
➡ Convenors: T. Ullrich, D. Morrison, R. Venugopalan, V. Guzey
➡ bi-weekly meetings at BNL + phone bridge
‣ http://www.eic.bnl.gov/ for details (and previous seminars)

26
Monday, 13 April 2009

http://www.eic.bnl.gov
http://www.eic.bnl.gov


Winter Workshop 2009: macl@bnl.gov

What is happening now - eA notes

27

In the process of composing eA “EIC notes” linking theory, 
experiment and simulations on distinct topics
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Diffraction

In the process of composing eA “EIC notes” linking theory, 
experiment and simulations on distinct topics
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What is happening now - eA notes
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Diffraction Hadronization

In the process of composing eA “EIC notes” linking theory, 
experiment and simulations on distinct topics
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What is happening now - eA notes

27

Diffraction Hadronization Jets

In the process of composing eA “EIC notes” linking theory, 
experiment and simulations on distinct topics
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Summary
An EIC presents a unique opportunity in high energy nuclear physics 
and precision QCD physics

28

e+A Polarized e+p
 Study the Physics of Strong Colour Fields

• Establish (or not) the existence of the saturation 
regime 

• Explore non-linear QCD
• Measure momentum & space-time of glue

 Study the nature of colour singlet excitations 
(Pomerons)

 Test and study the limits of universality (eA vs. pA)

 Precisely image the sea-
quarks and gluons to 
determine the spin, flavour 
and spatial structure of the 
nucleon

• Embraced by NSAC in Long Range PLan
• Recommendation of $30M for R&D over next 5 years

• EIC Long Term Goal - start construction in next decade
• Possibility of Staged Approach

• Cheap (no civil construction costs)
• Early time-scale for realisation (operation by ~2016)
• Cons - lower energy and luminosity than full design
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Charm at an EIC

• EIC:  allows multi-differential measurements of heavy flavour

• covers and extends energy range of SLAC, EMC, HERA, and JLAB 
allowing for the study of wide range of formation lengths

Based on H
V

Q
D

IS m
odel, J. Sm

ith
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Experimental Aspects
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Experimental Aspects

Focus on the rear/forward acceptance and thus on low-x / high-x physics 
- compact system of tracking and central electromagnetic calorimetry inside a magnetic 

dipole field and calorimetric end-walls outside
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I. Abt, A. Caldwell, X. Liu, J. Sutiak, hep-ex 0407053

Concepts:
(a)
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Experimental Aspects

Focus on the rear/forward acceptance and thus on low-x / high-x physics 
- compact system of tracking and central electromagnetic calorimetry inside a magnetic 

dipole field and calorimetric end-walls outside

Positron Hemisphere
EM calorimeter end-wall at -360cm

EM barrel calorimeter
covering z = ±70cm

EM catcher calorimeter
at z = -110cm

EM catcher calorimeter
at z = +110cm

Proton Hemisphere
EM and hadron calorimeter
end-wall at +360cm-3.8 m 0 +3.8 m 5.2 m

EM endwall
hadronic
endwall

+ 0.8 m

- 0.8 m
calorimetry

tracking

magnetic field

e p

J. Pasukonis, B.Surrow, physics/0608290I. Abt, A. Caldwell, X. Liu, J. Sutiak, hep-ex 0407053

(b) Focus on a wide acceptance detector system similar to HERA experiments 
- allow for the maximum possible Q2 range.

Concepts:
(a)
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dg1
d log(Q2)

∝−Δg(x,Q2)

ΔG = Δg(x,Q2)dx
x= 0

x=1

∫

Superb sensitivity to ΔG at 
small x!

EIC as an e+p machine - The Quest for ΔG

Spin Structure of the Proton

½ = ½ ΔΣ + ΔG + Lq + Lg

quark contribution ΔΣ  ≈ 0.3  

gluon contribution  ΔG  ≈  1 ± 1 ?

ΔG:  a “quotable” property of the proton 
(like mass, charge)

Measure through scaling violation:
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t dependence on Diffractive Physics

33
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t dependence on Diffractive Physics

33
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Connection to other fields

34

CP Violation

         ?

Non-linearity,

Confinement,

AdS/QCD

QCD

Background

EIC

QCD Theory

Hadron Structure

(JLAB 12 GeV, RHIC-Spin)

Relativistic 

   Heavy Ion Physics

    (RHIC, LHC & FAIR)

Technology Frontier
Examples: beam cooling, 

energy recovery linac, 

polarized electron source,

superconducting RF 

cavities

High Energy 

Physics
(LHC, LHeC, 

Cosmic Rays)

Condensed 

          Matter Physics
                  Bose-Einstein Condensate

                               Spin Glasses

                                         Graphene

Lattice QCD 
New Generation

of Instrumentation

Physics of Strong 

Color Fields

ab initio

QCD Calculations

& Computational 

Development

Understanding

of Initial Conditions, 

Saturation, Energy Loss

Valence ↔ Sea

GPDs

Saturation Models
Color Glass Condensate

Fundamental

      Symmetries
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The Nuclear “Oomph” factor
More sophisticated analyses ⇒ confirm (exceed) pocket formula 
(e.g. Kowalski, Lappi and Venugopalan, PRL 100, 022303 (2008); Armesto et al., PRL 
94:022002; Kowalski, Teaney, PRD 68:114005)

35

Models need to use realistic b-
dependence for nuclei and nucleons 

⇒ b = 0 for proton ≠ bmed
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2007 NSAC Long Range Plan
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Diffractive Physics in e+A
• How to measure diffraction in e+A?

➡ Use HERA method of Large Rapidity Gaps

➡ Ideal gap of ~7.7 at HERA units reduced to 3-4 due to spread from 
hadronisation

37
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hadronisation
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• Issues with measuring diffractive 
physics in e+A:

➡ t required for nucleus to break-up is 
small (~ 30 MeV/c2)

➡ t required for nucleus to be 
measured in detector >> 30 MeV/c2

➡ To measure t dependence, must 
measure exclusive diffraction (e.g. 
vector mesons - t ~ pT2)

coherent

incoherent

STAR - UPC Collisions
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Status of the EIC Project:
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Status of the EIC Project:
• The Electron Ion Collider (EIC) White 

Paper
• The GPD/DVCS White Paper
• Position Paper: e+A Physics at an 

Electron Ion Collider
• The eRHIC machine: Accelerator 

Position Paper
• ELIC ZDR Draft 
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MEEIC parameters for e-p collisions
not coolednot cooled pre-cooledpre-cooled high energy coolinghigh energy cooling

p e p e p e

Energy, GeV 250 4 250 4 250 4
Number of bunches 111 111 111
Bunch intensity, 1011 2.0 0.31 2.0 0.31 2.0 0.31

Bunch charge, nC 32 5 32 5 32 5

Normalized emittance, 1e-6 m, 
95% for p / rms for e 15 73 6 29 1.5 7.3

rms emittance, nm 9.4 9.4 3.8 3.8 0.94 0.94
beta*, cm 50 50 50 50 50 50

rms bunch length, cm 20 0.2 20 0.2 5 0.2

beam-beam for p /disruption for 
e 1.5e-3 3.1 3.8e-3 7.7 0.015 7.7

Peak Luminosity, 1e32,      
cm-2s-1 0.930.93 2.32.3 9.39.3
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eRHIC

eRHIC R&D - Recirculation Passes

 Separate recirculation loops
 Small aperture magnets
 Low current, low power consumption
 Minimized cost 

5 mm

5 mm

5 mm

5 mm

10 GeV 
(20 GeV)

8.1 GeV 
(16.1 GeV)

6.2 GeV 
(12.2 GeV)

4.3 GeV 
(8.3 GeV)

C
om

m
on

 v
ac

uu
m
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ha

m
be

r
Development of prototype magnets is 

underway (BNL LDRD, V.N.Litvinenko)
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