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Hank Levy...1927 - 2001

Hank Levy: American Jazz Composer; leading
author of jazz in "Time” (odd time signatures)
An incident occurred when Stan Kenton'’s

Band first recorded the Levy chart “*Chiapas”:

The lead sax player was unable to play the music
and stormed off. Hours later he came back having

transcribed the music to 4/4 time.
Chiapas for EIC converts kinematics and

more importantly RESOLUTIONS from the
physical variables (x,Q2) to (p,0)

Hemmick played alto & bari sax in Hank Levy’s College Jazz Band (band 2 of 3) in 1980



Goals

The EIC "Golden Measurement” for
determining tracking requirements is F, (x,Q?)
This measurement requires that we measure
the reduced cross section G, 4(x,Q?) at various
beam kinematics so as to find the variation
over arange in inelasticity (y) and thereby
measure F|

One can semi-analytically factorize the error
in and reduced cross section measurement
due to experimental measures.



Some math....
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The measurement is made by counting (dN) in bins of
some width Aln(x) by Aln(Q?) (squares on log-log)

d*N = Idxd " dxdQ? =
T (Fo(x,0%) = L Fy(x,0%)) Zo ™ dxdQ? =
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d?N

din(x)din(Q?) = L4

Parameterized: e.g. MRST2002 (NLO) Simple Kinematics



Errors due to stats & resolution:
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Fractional error due ONLY to momentum:
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Fractional error due ONLY to direction:
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Computing Error Targets:

If we assume that any of these terms should
be set to some constant fractional error g, we
can then solve of the dp and 00 requirement.
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Goals of Chiapas

Calculate, as a function of (p,0):

1 (aln(M)\~* 0 In(m)\ 1 1
p( dp ) & ( 20 ) &\/1\71(19,9)
Provide user code to:

Accept a target value of epsilon.

5 .
Plot target curves of?p & 66 as functions of
momentum for bins in 0.

Overlay statistical error profiles on the prior plots with
user-supplied values of Z, Aln(x), and AIn(Q?2).

User must select ¢ intelligently.

NOTE: (Ac)? = 3.89 x 101 fb GeV?



Considerations for ¢

In a real experiment, when you know your
finite resolution you can correct for it!

Thus, one might say that a desired result at
1% comes from a spectrometer with €=0.05
The knowledge of physicists who have done
this before is required to establish e.

The result of the algebra (barring bugs)
should be correct.

We shall use €=0.05 in the calculations here...assuming that correction makes 1% result.



Calculation Sets:

Early eRHIC running will start @ 5 GeV and
increase to ~10 GeV via operations funds

E proton = 50, 100, & 250 GeV

L =10 fb* different calendar times for each £

10 bins per decade in x and Q2

Aln(x) = AIn(Q?) = 0.23

These are all reasonable estimates.
We'll use €=0.05 targeting an after-correction
precision of 1%.
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Kinematical Guidelines 5x100
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Kinematical Guidelines gx250
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Kinematical Guidelines 10x100
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Kinematical Guidelines 10x50
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MBAR(p,0) 5x100 GeV

Electron MBAR
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The kinematical edges are based upon where
MRST throws complaints.



Statistical Limits

Electron STAT LIMIT
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The Z-scale is the fractional error from 10 fb™
measured into bins of 10 per decade of x,Q?



Momentum Resolution
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The color scale is op/p limit required to produce e=0.01
performance for 5x1o0o0.

Structure near edges could be mistakes in derivative at
kinematical boundary...should be checked.
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Angular Resolution
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This is the angular resolution in degrees (sorry) across
the spectrometer.
Again, slightly strange at kinematical boundary.
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Remarks

Stats easily beat 1%.
Therefore spectrometer resolution is the key

factor in determining precision.
Summarize resolutions on next 6 slides.
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Next for Chiapas: “F’" m...

d Reconstruction of event kinematics E
) | 2 2
O Electron method: scattered electron E ¢ _ Pt (£ —p2)h
C 2(E —p.),
2 E’ cos? ( 2,)
€ 2
Te = 56:5; o E’ 2(O2NY < p2 (E p )2
S O (1 — g sin (7‘3)) y ) coty = g“,h z g
< pT,h + (E pz)h
C
El EI !
ye=1—2E‘L3 (1—6089;)21—E—881H2(92—e> F
’ : O Jacquet-Blondel method: hadronic final state
2
. Tip= JB
/ SYJB 2 2
Q? =2E.E' (1 + cosb.) = 4E.E’ cos® (%) — e 2
2 1 —ye Pr.n = Zpa;,h + Zpy,h
B E — pz)h h h
JB Kinematics uses PID hadrons B 2E,
Fills in extremeIY low x : (E—p,), = Z(Eh — Dan)
(e @ beam pipe) 2 _ _Pra h
BT 1 —ys



. Some Info on Internal RadCors

e ~—

A Inclusive cross section
> Otot = Oela * Ggela * Gjnel + Oy
@ for all parts photons can be radiated from the incoming and

outgoing lepton, high Z-material Compton peak.

E radiation is proportional to Z? of target, for elastic scattering like
bremsstrahlung

¥ radiation is proportional to 1/m? of radiating particle

> elq_§'ric: \é

/d‘*\%fff A

a) b) c) d) e) /
initial final vacuum loops

> quasi-elastic: scattering on proton in nuclei
2 proton stays intact
@ nuclei breaks up

=%wo photon exchange? Interference terms?

BROOKHRMEN  £.C. Aschenauer February 2012 28




Summary

Chiapas does semi-analytical calculation of
detector resolution and coverage necessary
to achieve physics goals.
JB Kinematics are simple extension:

Identifies needs for hadron PID.
Initial (& final) state radiation can be handled
as “limiters” in follow-up calculation:

Don’t make spectrometer better than rad limit.
"Fold” instead of "Unfold”.



