Difference between revisions of "Polarization profile"
(Created page with "Polarization and intensity profiles are gaussian <math> \begin{align} I_B(x,y) &= I_{0,B} \exp\left\{ -\frac{x^2}{\sigma_{x,I}^2} - \frac{y^2}{\sigma_{y,I}^2}\right\} \\ I_Y(x,y...") |
|||
Line 1: | Line 1: | ||
− | + | = Two-dimensional case = | |
− | <math> | + | Let's assume the polarization and intensity profiles have a gaussian shape: |
− | \begin{align} | + | |
+ | <math>\begin{align} | ||
I_B(x,y) &= I_{0,B} \exp\left\{ -\frac{x^2}{\sigma_{x,I}^2} - \frac{y^2}{\sigma_{y,I}^2}\right\} \\ | I_B(x,y) &= I_{0,B} \exp\left\{ -\frac{x^2}{\sigma_{x,I}^2} - \frac{y^2}{\sigma_{y,I}^2}\right\} \\ | ||
I_Y(x,y) &= I_{0,Y} \exp\left\{ -\frac{x^2}{\sigma_{x,I}^2} - \frac{y^2}{\sigma_{y,I}^2}\right\} \\ | I_Y(x,y) &= I_{0,Y} \exp\left\{ -\frac{x^2}{\sigma_{x,I}^2} - \frac{y^2}{\sigma_{y,I}^2}\right\} \\ | ||
P_B(x,y) &= P_{0,B} \exp\left\{ -\frac{x^2}{\sigma_{x,P}^2} - \frac{y^2}{\sigma_{y,P}^2}\right\} \\ | P_B(x,y) &= P_{0,B} \exp\left\{ -\frac{x^2}{\sigma_{x,P}^2} - \frac{y^2}{\sigma_{y,P}^2}\right\} \\ | ||
− | P_Y(x,y) &= P_{0,Y} \exp\left\{ -\frac{x^2}{\sigma_{x,P}^2} - \frac{y^2}{\sigma_{y,P}^2}\right\} | + | P_Y(x,y) &= P_{0,Y} \exp\left\{ -\frac{x^2}{\sigma_{x,P}^2} - \frac{y^2}{\sigma_{y,P}^2}\right\} \end{align}</math> |
− | \end{align} | ||
− | </math> | ||
+ | Since we are interested only in the width of the polarization profile with respect to the intensity one we can use the following relations: | ||
− | <math> | + | <math>\begin{align} |
− | \begin{align} | ||
\sigma^2_{x,I} &\equiv \sigma^2_{y,I} \equiv 1 \\ | \sigma^2_{x,I} &\equiv \sigma^2_{y,I} \equiv 1 \\ | ||
\sigma^2_{x,P} &\equiv 1/R_x \\ | \sigma^2_{x,P} &\equiv 1/R_x \\ | ||
− | \sigma^2_{y,P} &\equiv 1/R_y | + | \sigma^2_{y,P} &\equiv 1/R_y\end{align}</math> |
− | \end{align} | ||
− | </math> | ||
+ | Integrating from <math>-\infty</math> to <math>\infty</math> over both dimensions we get for the polarization weighted with intensity of either one or both beams: | ||
− | <math> | + | <math>\begin{align} |
− | \begin{align} | ||
\frac{\iint P(x,y) I(x,y) dx dy}{\iint I(x,y) dx dy} &= \frac{P_{0}}{\sqrt{1 + R_x} \sqrt{1 + R_y}} \\ | \frac{\iint P(x,y) I(x,y) dx dy}{\iint I(x,y) dx dy} &= \frac{P_{0}}{\sqrt{1 + R_x} \sqrt{1 + R_y}} \\ | ||
\frac{\iint P(x,y) I_B(x,y) I_Y(x,y) dx dy}{\iint I_B(x,y) I_Y(x,y) dx dy} &= \frac{P_{0}}{ \sqrt{1 + \frac{R_x}{2}} \sqrt{1 + \frac{R_y}{2}} }\\ | \frac{\iint P(x,y) I_B(x,y) I_Y(x,y) dx dy}{\iint I_B(x,y) I_Y(x,y) dx dy} &= \frac{P_{0}}{ \sqrt{1 + \frac{R_x}{2}} \sqrt{1 + \frac{R_y}{2}} }\\ | ||
− | \frac{\iint P_B(x,y) P_Y(x,y) I_B(x,y) I_Y(x,y) dx dy}{\iint I_B(x,y) I_Y(x,y) dx dy} &= \frac{P_{0,B} P_{0,Y}}{\sqrt{1 + \frac{R_{x,B}}{2} + \frac{R_{x,Y}}{2} } \sqrt{1 + \frac{R_{y,B}}{2} + \frac{R_{y,Y}}{2} }} | + | \frac{\iint P_B(x,y) P_Y(x,y) I_B(x,y) I_Y(x,y) dx dy}{\iint I_B(x,y) I_Y(x,y) dx dy} &= \frac{P_{0,B} P_{0,Y}}{\sqrt{1 + \frac{R_{x,B}}{2} + \frac{R_{x,Y}}{2} } \sqrt{1 + \frac{R_{y,B}}{2} + \frac{R_{y,Y}}{2} }}\end{align}</math> |
− | \end{align} | + | |
− | </math> | + | As we normaly measure the average polarization <math>\langle P \rangle</math> given by it is trivial to get the equations for re-weighting factors <math>k_{SSA}</math> and <math>k_{DSA}</math>: |
+ | |||
+ | <math>\begin{align} | ||
+ | \langle P\rangle_{SSA} &= k_{SSA} \times \langle P \rangle \\ | ||
+ | \langle P_B\cdot P_Y\rangle_{DSA} &= k_{DSA} \times \langle P_B \rangle \cdot \langle P_Y \rangle\end{align}</math> | ||
+ | |||
+ | where | ||
− | <math> | + | <math>\begin{align} |
− | \begin{align} | ||
k_{SSA} &= \frac{\sqrt{1 + R_x} \sqrt{1 + R_y}}{ \sqrt{1 + \frac{R_x}{2}} \sqrt{1 + \frac{R_y}{2}} }\\ | k_{SSA} &= \frac{\sqrt{1 + R_x} \sqrt{1 + R_y}}{ \sqrt{1 + \frac{R_x}{2}} \sqrt{1 + \frac{R_y}{2}} }\\ | ||
k_{DSA} &= \frac{ \sqrt{1 + R_{x,B}} \sqrt{1 + R_{y,B}} \sqrt{1 + R_{x,Y}} \sqrt{1 + R_{y,Y}} } | k_{DSA} &= \frac{ \sqrt{1 + R_{x,B}} \sqrt{1 + R_{y,B}} \sqrt{1 + R_{x,Y}} \sqrt{1 + R_{y,Y}} } | ||
− | { \sqrt{1 + \frac{R_{x,B}}{2} + \frac{R_{x,Y}}{2} } \sqrt{1 + \frac{R_{y,B}}{2} + \frac{R_{y,Y}}{2} } } | + | { \sqrt{1 + \frac{R_{x,B}}{2} + \frac{R_{x,Y}}{2} } \sqrt{1 + \frac{R_{y,B}}{2} + \frac{R_{y,Y}}{2} } }\end{align}</math> |
− | \end{align} | + | |
− | </math> | + | It is interesting to study the difference between the scale factors <math>k_{SSA}</math> and <math>k_{DSA}</math>. To make things easier we assume the same value for all <math>R</math>'s which is <math>\sim 0.2</math>. |
+ | |||
+ | <math>\begin{align} | ||
+ | \frac{k_{DSA}}{k_{SSA,B} k_{SSA,Y}} = 1 + \frac{R^2}{4(1+R)}\end{align}</math> | ||
+ | |||
+ | where the last term gives a correction on the order of <math>\lesssim 1\%</math>. Therefore, with good precision we have | ||
+ | |||
+ | <math>\begin{align} | ||
+ | \langle P_B\cdot P_Y\rangle_{DSA} &\approx \langle P\rangle_{SSA,B} \langle P\rangle_{SSA,Y} \end{align}</math> |
Revision as of 14:27, 9 August 2012
Two-dimensional case
Let's assume the polarization and intensity profiles have a gaussian shape:
Since we are interested only in the width of the polarization profile with respect to the intensity one we can use the following relations:
Integrating from to over both dimensions we get for the polarization weighted with intensity of either one or both beams:
As we normaly measure the average polarization given by it is trivial to get the equations for re-weighting factors and :
where
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} k_{SSA} &= \frac{\sqrt{1 + R_x} \sqrt{1 + R_y}}{ \sqrt{1 + \frac{R_x}{2}} \sqrt{1 + \frac{R_y}{2}} }\\ k_{DSA} &= \frac{ \sqrt{1 + R_{x,B}} \sqrt{1 + R_{y,B}} \sqrt{1 + R_{x,Y}} \sqrt{1 + R_{y,Y}} } { \sqrt{1 + \frac{R_{x,B}}{2} + \frac{R_{x,Y}}{2} } \sqrt{1 + \frac{R_{y,B}}{2} + \frac{R_{y,Y}}{2} } }\end{align}}
It is interesting to study the difference between the scale factors and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_{DSA}} . To make things easier we assume the same value for all 's which is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sim 0.2} .
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{k_{DSA}}{k_{SSA,B} k_{SSA,Y}} = 1 + \frac{R^2}{4(1+R)}\end{align}}
where the last term gives a correction on the order of . Therefore, with good precision we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \langle P_B\cdot P_Y\rangle_{DSA} &\approx \langle P\rangle_{SSA,B} \langle P\rangle_{SSA,Y} \end{align}}