Difference between revisions of "Polarization profile"
Line 1: | Line 1: | ||
= Measuring Beam Polarization Profile with p-Carbon Polarimeters = | = Measuring Beam Polarization Profile with p-Carbon Polarimeters = | ||
+ | https://wiki.bnl.gov/rhicspin/upload/6/6c/Profile.gif<br> | ||
+ | https://wiki.bnl.gov/rhicspin/upload/4/41/Intens.gif<br> | ||
https://wiki.bnl.gov/rhicspin/upload/2/29/Polar.gif | https://wiki.bnl.gov/rhicspin/upload/2/29/Polar.gif | ||
Latest revision as of 20:05, 28 November 2012
Measuring Beam Polarization Profile with p-Carbon Polarimeters
Two-dimensional case
Let's assume the polarization and intensity profiles have a gaussian shape:
Since we are interested only in the width of the polarization profile with respect to the intensity one we can use the following relations:
Integrating from Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\infty} to over both dimensions we get for the polarization weighted with intensity of either one or both beams:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{\iint P(x,y) I(x,y) dx dy}{\iint I(x,y) dx dy} &= \frac{P_{0}}{\sqrt{1 + R_x} \sqrt{1 + R_y}} \\ \frac{\iint P(x,y) I_B(x,y) I_Y(x,y) dx dy}{\iint I_B(x,y) I_Y(x,y) dx dy} &= \frac{P_{0}}{ \sqrt{1 + \frac{R_x}{2}} \sqrt{1 + \frac{R_y}{2}} }\\ \frac{\iint P_B(x,y) P_Y(x,y) I_B(x,y) I_Y(x,y) dx dy}{\iint I_B(x,y) I_Y(x,y) dx dy} &= \frac{P_{0,B} P_{0,Y}}{\sqrt{1 + \frac{R_{x,B}}{2} + \frac{R_{x,Y}}{2} } \sqrt{1 + \frac{R_{y,B}}{2} + \frac{R_{y,Y}}{2} }}\end{align}}
As we normaly measure the average polarization given by it is trivial to get the equations for re-weighting factors Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_{SSA}} and :
where
It is interesting to study the difference between the scale factors Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_{SSA}} and . To make things easier we assume the same value for all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} 's which is .
where the last term gives a correction on the order of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lesssim 1\%} . Therefore, with good precision we have
Time dependent P_SSA