Polarization profile: Difference between revisions
From RHIC Spin Group
Jump to navigationJump to search
(Created page with "Polarization and intensity profiles are gaussian <math> \begin{align} I_B(x,y) &= I_{0,B} \exp\left\{ -\frac{x^2}{\sigma_{x,I}^2} - \frac{y^2}{\sigma_{y,I}^2}\right\} \\ I_Y(x,y...") |
|||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Polarization | = Measuring Beam Polarization Profile with p-Carbon Polarimeters = | ||
<math> | https://wiki.bnl.gov/rhicspin/upload/6/6c/Profile.gif<br> | ||
\begin{align} | https://wiki.bnl.gov/rhicspin/upload/4/41/Intens.gif<br> | ||
https://wiki.bnl.gov/rhicspin/upload/2/29/Polar.gif | |||
= Two-dimensional case = | |||
Let's assume the polarization and intensity profiles have a gaussian shape: | |||
<math>\begin{align} | |||
I_B(x,y) &= I_{0,B} \exp\left\{ -\frac{x^2}{\sigma_{x,I}^2} - \frac{y^2}{\sigma_{y,I}^2}\right\} \\ | I_B(x,y) &= I_{0,B} \exp\left\{ -\frac{x^2}{\sigma_{x,I}^2} - \frac{y^2}{\sigma_{y,I}^2}\right\} \\ | ||
I_Y(x,y) &= I_{0,Y} \exp\left\{ -\frac{x^2}{\sigma_{x,I}^2} - \frac{y^2}{\sigma_{y,I}^2}\right\} \\ | I_Y(x,y) &= I_{0,Y} \exp\left\{ -\frac{x^2}{\sigma_{x,I}^2} - \frac{y^2}{\sigma_{y,I}^2}\right\} \\ | ||
P_B(x,y) &= P_{0,B} \exp\left\{ -\frac{x^2}{\sigma_{x,P}^2} - \frac{y^2}{\sigma_{y,P}^2}\right\} \\ | P_B(x,y) &= P_{0,B} \exp\left\{ -\frac{x^2}{\sigma_{x,P}^2} - \frac{y^2}{\sigma_{y,P}^2}\right\} \\ | ||
P_Y(x,y) &= P_{0,Y} \exp\left\{ -\frac{x^2}{\sigma_{x,P}^2} - \frac{y^2}{\sigma_{y,P}^2}\right\} | P_Y(x,y) &= P_{0,Y} \exp\left\{ -\frac{x^2}{\sigma_{x,P}^2} - \frac{y^2}{\sigma_{y,P}^2}\right\} \end{align}</math> | ||
\end{align} | |||
</math> | |||
Since we are interested only in the width of the polarization profile with respect to the intensity one we can use the following relations: | |||
<math> | <math>\begin{align} | ||
\begin{align} | |||
\sigma^2_{x,I} &\equiv \sigma^2_{y,I} \equiv 1 \\ | \sigma^2_{x,I} &\equiv \sigma^2_{y,I} \equiv 1 \\ | ||
\sigma^2_{x,P} &\equiv 1/R_x \\ | \sigma^2_{x,P} &\equiv 1/R_x \\ | ||
\sigma^2_{y,P} &\equiv 1/R_y | \sigma^2_{y,P} &\equiv 1/R_y\end{align}</math> | ||
\end{align} | |||
</math> | |||
Integrating from <math>-\infty</math> to <math>\infty</math> over both dimensions we get for the polarization weighted with intensity of either one or both beams: | |||
<math> | <math>\begin{align} | ||
\begin{align} | |||
\frac{\iint P(x,y) I(x,y) dx dy}{\iint I(x,y) dx dy} &= \frac{P_{0}}{\sqrt{1 + R_x} \sqrt{1 + R_y}} \\ | \frac{\iint P(x,y) I(x,y) dx dy}{\iint I(x,y) dx dy} &= \frac{P_{0}}{\sqrt{1 + R_x} \sqrt{1 + R_y}} \\ | ||
\frac{\iint P(x,y) I_B(x,y) I_Y(x,y) dx dy}{\iint I_B(x,y) I_Y(x,y) dx dy} &= \frac{P_{0}}{ \sqrt{1 + \frac{R_x}{2}} \sqrt{1 + \frac{R_y}{2}} }\\ | \frac{\iint P(x,y) I_B(x,y) I_Y(x,y) dx dy}{\iint I_B(x,y) I_Y(x,y) dx dy} &= \frac{P_{0}}{ \sqrt{1 + \frac{R_x}{2}} \sqrt{1 + \frac{R_y}{2}} }\\ | ||
\frac{\iint P_B(x,y) P_Y(x,y) I_B(x,y) I_Y(x,y) dx dy}{\iint I_B(x,y) I_Y(x,y) dx dy} &= \frac{P_{0,B} P_{0,Y}}{\sqrt{1 + \frac{R_{x,B}}{2} + \frac{R_{x,Y}}{2} } \sqrt{1 + \frac{R_{y,B}}{2} + \frac{R_{y,Y}}{2} }} | \frac{\iint P_B(x,y) P_Y(x,y) I_B(x,y) I_Y(x,y) dx dy}{\iint I_B(x,y) I_Y(x,y) dx dy} &= \frac{P_{0,B} P_{0,Y}}{\sqrt{1 + \frac{R_{x,B}}{2} + \frac{R_{x,Y}}{2} } \sqrt{1 + \frac{R_{y,B}}{2} + \frac{R_{y,Y}}{2} }}\end{align}</math> | ||
\end{align} | |||
</math> | |||
<math> | As we normaly measure the average polarization <math>\langle P \rangle</math> given by it is trivial to get the equations for re-weighting factors <math>k_{SSA}</math> and <math>k_{DSA}</math>: | ||
\begin{align} | |||
<math>\begin{align} | |||
\langle P\rangle_{SSA} &= k_{SSA} \times \langle P \rangle \\ | |||
\langle P_B\cdot P_Y\rangle_{DSA} &= k_{DSA} \times \langle P_B \rangle \cdot \langle P_Y \rangle\end{align}</math> | |||
where | |||
<math>\begin{align} | |||
k_{SSA} &= \frac{\sqrt{1 + R_x} \sqrt{1 + R_y}}{ \sqrt{1 + \frac{R_x}{2}} \sqrt{1 + \frac{R_y}{2}} }\\ | k_{SSA} &= \frac{\sqrt{1 + R_x} \sqrt{1 + R_y}}{ \sqrt{1 + \frac{R_x}{2}} \sqrt{1 + \frac{R_y}{2}} }\\ | ||
k_{DSA} &= \frac{ \sqrt{1 + R_{x,B}} \sqrt{1 + R_{y,B}} \sqrt{1 + R_{x,Y}} \sqrt{1 + R_{y,Y}} } | k_{DSA} &= \frac{ \sqrt{1 + R_{x,B}} \sqrt{1 + R_{y,B}} \sqrt{1 + R_{x,Y}} \sqrt{1 + R_{y,Y}} } | ||
{ \sqrt{1 + \frac{R_{x,B}}{2} + \frac{R_{x,Y}}{2} } \sqrt{1 + \frac{R_{y,B}}{2} + \frac{R_{y,Y}}{2} } } | { \sqrt{1 + \frac{R_{x,B}}{2} + \frac{R_{x,Y}}{2} } \sqrt{1 + \frac{R_{y,B}}{2} + \frac{R_{y,Y}}{2} } }\end{align}</math> | ||
\end{align} | |||
It is interesting to study the difference between the scale factors <math>k_{SSA}</math> and <math>k_{DSA}</math>. To make things easier we assume the same value for all <math>R</math>'s which is <math>\sim 0.2</math>. | |||
<math>\begin{align} | |||
\frac{k_{DSA}}{k_{SSA,B} k_{SSA,Y}} = 1 + \frac{R^2}{4(1+R)}\end{align}</math> | |||
where the last term gives a correction on the order of <math>\lesssim 1\%</math>. Therefore, with good precision we have | |||
<math>\begin{align} | |||
\langle P_B\cdot P_Y\rangle_{DSA} &\approx \langle P\rangle_{SSA,B} \langle P\rangle_{SSA,Y} \end{align}</math> | |||
= Time dependent P_SSA = | |||
<math> | |||
P_{SSA} = \left(1 + \frac12 R(t)\right) P(t) = (1 + \frac12 R_0 + \frac12 R' t)(P_0 + P't) \approx P_0 + P't + \frac12 R_0 P_0 + \frac12 (R_0 P' + R' P_0) t | |||
=P_0 (1 + \frac12 R_0) + (P' + \frac12 (R_0 P' + R' P_0) ) t | |||
</math> | </math> |
Latest revision as of 20:05, 28 November 2012
Measuring Beam Polarization Profile with p-Carbon Polarimeters
Two-dimensional case
Let's assume the polarization and intensity profiles have a gaussian shape:
Since we are interested only in the width of the polarization profile with respect to the intensity one we can use the following relations:
Integrating from to over both dimensions we get for the polarization weighted with intensity of either one or both beams:
As we normaly measure the average polarization given by it is trivial to get the equations for re-weighting factors and :
where
It is interesting to study the difference between the scale factors and . To make things easier we assume the same value for all 's which is .
where the last term gives a correction on the order of . Therefore, with good precision we have
Time dependent P_SSA