Polarization profile: Difference between revisions

From RHIC Spin Group
Jump to navigationJump to search
(Created page with "Polarization and intensity profiles are gaussian <math> \begin{align} I_B(x,y) &= I_{0,B} \exp\left\{ -\frac{x^2}{\sigma_{x,I}^2} - \frac{y^2}{\sigma_{y,I}^2}\right\} \\ I_Y(x,y...")
 
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
Polarization and intensity profiles are gaussian
= Measuring Beam Polarization Profile with p-Carbon Polarimeters =


<math>
https://wiki.bnl.gov/rhicspin/upload/6/6c/Profile.gif<br>
\begin{align}
https://wiki.bnl.gov/rhicspin/upload/4/41/Intens.gif<br>
https://wiki.bnl.gov/rhicspin/upload/2/29/Polar.gif
 
= Two-dimensional case =
 
Let's assume the polarization and intensity profiles have a gaussian shape:
 
<math>\begin{align}
I_B(x,y) &= I_{0,B} \exp\left\{ -\frac{x^2}{\sigma_{x,I}^2} - \frac{y^2}{\sigma_{y,I}^2}\right\} \\
I_B(x,y) &= I_{0,B} \exp\left\{ -\frac{x^2}{\sigma_{x,I}^2} - \frac{y^2}{\sigma_{y,I}^2}\right\} \\
I_Y(x,y) &= I_{0,Y} \exp\left\{ -\frac{x^2}{\sigma_{x,I}^2} - \frac{y^2}{\sigma_{y,I}^2}\right\} \\
I_Y(x,y) &= I_{0,Y} \exp\left\{ -\frac{x^2}{\sigma_{x,I}^2} - \frac{y^2}{\sigma_{y,I}^2}\right\} \\
P_B(x,y) &= P_{0,B} \exp\left\{ -\frac{x^2}{\sigma_{x,P}^2} - \frac{y^2}{\sigma_{y,P}^2}\right\} \\
P_B(x,y) &= P_{0,B} \exp\left\{ -\frac{x^2}{\sigma_{x,P}^2} - \frac{y^2}{\sigma_{y,P}^2}\right\} \\
P_Y(x,y) &= P_{0,Y} \exp\left\{ -\frac{x^2}{\sigma_{x,P}^2} - \frac{y^2}{\sigma_{y,P}^2}\right\}
P_Y(x,y) &= P_{0,Y} \exp\left\{ -\frac{x^2}{\sigma_{x,P}^2} - \frac{y^2}{\sigma_{y,P}^2}\right\} \end{align}</math>
\end{align}
</math>


Since we are interested only in the width of the polarization profile with respect to the intensity one we can use the following relations:


<math>
<math>\begin{align}
\begin{align}
\sigma^2_{x,I} &\equiv \sigma^2_{y,I} \equiv 1 \\
\sigma^2_{x,I} &\equiv \sigma^2_{y,I} \equiv 1 \\
\sigma^2_{x,P} &\equiv 1/R_x \\
\sigma^2_{x,P} &\equiv 1/R_x \\
\sigma^2_{y,P} &\equiv 1/R_y
\sigma^2_{y,P} &\equiv 1/R_y\end{align}</math>
\end{align}
</math>


Integrating from <math>-\infty</math> to <math>\infty</math> over both dimensions we get for the polarization weighted with intensity of either one or both beams:


<math>
<math>\begin{align}
\begin{align}
\frac{\iint P(x,y) I(x,y) dx dy}{\iint I(x,y) dx dy}        &= \frac{P_{0}}{\sqrt{1 + R_x} \sqrt{1 + R_y}} \\
\frac{\iint P(x,y) I(x,y) dx dy}{\iint I(x,y) dx dy}        &= \frac{P_{0}}{\sqrt{1 + R_x} \sqrt{1 + R_y}} \\


\frac{\iint P(x,y) I_B(x,y) I_Y(x,y) dx dy}{\iint I_B(x,y) I_Y(x,y) dx dy} &= \frac{P_{0}}{ \sqrt{1 + \frac{R_x}{2}} \sqrt{1 + \frac{R_y}{2}} }\\
\frac{\iint P(x,y) I_B(x,y) I_Y(x,y) dx dy}{\iint I_B(x,y) I_Y(x,y) dx dy} &= \frac{P_{0}}{ \sqrt{1 + \frac{R_x}{2}} \sqrt{1 + \frac{R_y}{2}} }\\


\frac{\iint P_B(x,y) P_Y(x,y) I_B(x,y) I_Y(x,y) dx dy}{\iint I_B(x,y) I_Y(x,y) dx dy}  &= \frac{P_{0,B} P_{0,Y}}{\sqrt{1 + \frac{R_{x,B}}{2} + \frac{R_{x,Y}}{2} } \sqrt{1 + \frac{R_{y,B}}{2} + \frac{R_{y,Y}}{2} }}
\frac{\iint P_B(x,y) P_Y(x,y) I_B(x,y) I_Y(x,y) dx dy}{\iint I_B(x,y) I_Y(x,y) dx dy}  &= \frac{P_{0,B} P_{0,Y}}{\sqrt{1 + \frac{R_{x,B}}{2} + \frac{R_{x,Y}}{2} } \sqrt{1 + \frac{R_{y,B}}{2} + \frac{R_{y,Y}}{2} }}\end{align}</math>
\end{align}
</math>


<math>
As we normaly measure the average polarization <math>\langle P \rangle</math> given by it is trivial to get the equations for re-weighting factors <math>k_{SSA}</math> and <math>k_{DSA}</math>:
\begin{align}
 
<math>\begin{align}
\langle P\rangle_{SSA} &= k_{SSA} \times \langle P \rangle \\
\langle P_B\cdot P_Y\rangle_{DSA} &= k_{DSA} \times \langle P_B \rangle \cdot \langle P_Y \rangle\end{align}</math>
 
where
 
<math>\begin{align}
k_{SSA} &= \frac{\sqrt{1 + R_x} \sqrt{1 + R_y}}{ \sqrt{1 + \frac{R_x}{2}} \sqrt{1 + \frac{R_y}{2}} }\\
k_{SSA} &= \frac{\sqrt{1 + R_x} \sqrt{1 + R_y}}{ \sqrt{1 + \frac{R_x}{2}} \sqrt{1 + \frac{R_y}{2}} }\\
k_{DSA} &= \frac{ \sqrt{1 + R_{x,B}} \sqrt{1 + R_{y,B}} \sqrt{1 + R_{x,Y}} \sqrt{1 + R_{y,Y}} }
k_{DSA} &= \frac{ \sqrt{1 + R_{x,B}} \sqrt{1 + R_{y,B}} \sqrt{1 + R_{x,Y}} \sqrt{1 + R_{y,Y}} }
                 { \sqrt{1 + \frac{R_{x,B}}{2} + \frac{R_{x,Y}}{2} } \sqrt{1 + \frac{R_{y,B}}{2} + \frac{R_{y,Y}}{2} } }
                 { \sqrt{1 + \frac{R_{x,B}}{2} + \frac{R_{x,Y}}{2} } \sqrt{1 + \frac{R_{y,B}}{2} + \frac{R_{y,Y}}{2} } }\end{align}</math>
\end{align}
 
It is interesting to study the difference between the scale factors <math>k_{SSA}</math> and <math>k_{DSA}</math>. To make things easier we assume the same value for all <math>R</math>'s which is <math>\sim 0.2</math>.
 
<math>\begin{align}
\frac{k_{DSA}}{k_{SSA,B} k_{SSA,Y}} = 1 + \frac{R^2}{4(1+R)}\end{align}</math>
 
where the last term gives a correction on the order of <math>\lesssim 1\%</math>. Therefore, with good precision we have
 
<math>\begin{align}
\langle P_B\cdot P_Y\rangle_{DSA} &\approx \langle P\rangle_{SSA,B} \langle P\rangle_{SSA,Y} \end{align}</math>
 
 
 
= Time dependent P_SSA =
 
<math>
P_{SSA} = \left(1 + \frac12 R(t)\right) P(t) = (1 + \frac12 R_0 + \frac12 R' t)(P_0 + P't) \approx P_0 + P't + \frac12 R_0 P_0 + \frac12 (R_0 P' + R' P_0) t
=P_0 (1 + \frac12 R_0) + (P' + \frac12 (R_0 P' + R' P_0) ) t
</math>
</math>

Latest revision as of 20:05, 28 November 2012

Measuring Beam Polarization Profile with p-Carbon Polarimeters

Profile.gif
Intens.gif
Polar.gif

Two-dimensional case

Let's assume the polarization and intensity profiles have a gaussian shape:

Since we are interested only in the width of the polarization profile with respect to the intensity one we can use the following relations:

Integrating from to over both dimensions we get for the polarization weighted with intensity of either one or both beams:

As we normaly measure the average polarization given by it is trivial to get the equations for re-weighting factors and :

where

It is interesting to study the difference between the scale factors and . To make things easier we assume the same value for all 's which is .

where the last term gives a correction on the order of . Therefore, with good precision we have


Time dependent P_SSA