Measuring proton beam polarization and analyzing power with pp and pC elastic scattering at RHIC

Dmitri Smirnov
Brookhaven National Laboratory

for the RHIC Spin Group

September 24, 2011
Accelerator Complex at Brookhaven Lab

- Relativistic Heavy Ion Collider (RHIC) is a superconducting synchrotron
 - In successful operation since 2000
 - Provides polarized high energy proton beams
 - Covers wide range of energies 24 GeV to 250 GeV
 - Also unpolarized heavy ion beams Au-Au, d-Au, Cu-Cu
- Alternatig Gradient Synchrotron (AGS)
 - Serves as injector for RHIC
 - Three nobel prizes since 1960
Physics Objectives and Motivation

- Two operational detectors STAR and PHENIX
- Measure transverse and longitudinal spin asymmetries
- Aim to understand gluon polarization in the proton spin structure

\[
\frac{1}{2} = \frac{1}{2} \Delta \Sigma + L_z + \Delta g
\]

- Heavy ion program: Studies of quark-gluon plasma

Dmitri Smirnov
Requirements on RHIC Polarimeters

- Non-destructive polarization measurement
- Elastic scattering of a fixed target
- Maximum asymmetry/analyzing power \Rightarrow
 \Rightarrow Small momentum transfer $-t$ (region of Coulomb nuclear interference (CNI))

- Low energy of recoil products \Rightarrow
 \Rightarrow the detectors are in vacuum + no material in front

- The polarimeters should operate over a wide range of beam energies from injection at 24 to 250 GeV

- Beam polarization profile

- Polarization lifetime or decay during a fill

- **The physics program requires precision polarimetry $< 5\%$**
Measuring Beam Polarization

- The kinematics of elastic scattering is fully defined by the energy of recoil products.
- The momentum transfer \(t = (p_{\text{in}} - p_{\text{out}})^2 = -2ME_{\text{kin}} \)

In absence of hadronic spin-flip amplitude analyzing power \(A_N \) is exactly calculable from QED.

- In the experiment we measure asymmetry \(\varepsilon \)

\[
\varepsilon = \frac{N_L - N_R}{N_L + N_R}, \quad \varepsilon = \frac{\sqrt{N_L^{\uparrow}N_R^{\downarrow}} - \sqrt{N_L^{\downarrow}N_R^{\uparrow}}}{\sqrt{N_L^{\uparrow}N_R^{\downarrow}} + \sqrt{N_L^{\downarrow}N_R^{\uparrow}}}
\]

- Measured polarization \(P = \varepsilon / A_N(t) \), where \(A_N(t) \) is the analyzing power.

Model predictions
RHIC and AGS Polarimeters

- 120 buckets spaced by 114 ns
- Collisions with all spin combinations available: ↑↑, ↑↓, ↓↑, ↓↓
• **Hydrogen jet (H-jet) polarimeter**
 - Provides the *average* absolute polarization over the fill (~ 8 hours)

• **Two p-Carbon polarimeters in each ring**
 - About four 60-second measurements per fill
 - Bunch and fill polarization for the experiments
 - Vertical and horizontal beam polarization profile
 - Polarization decay in fill

• AGS polarimeter is similar to RHIC p-Carbon polarimeter

• STAR and PHENIX local polarimeters monitor spin direction at collision regions
• The polarized jet target is vertical
• Target polarization cycles ↑ /0/ ↓
every 500/50/500 seconds
H-Jet Polarimeter: Event Kinematics

- The beam and the target are both protons:

\[P = \frac{\varepsilon}{A_N(t)}, \quad P_{\text{beam}} = -\frac{\varepsilon_{\text{beam}}}{\varepsilon_{\text{target}}} \times P_{\text{target}} \]

- No need to know \(A_N \)!
- \(P_{\text{target}} \) is measured by a Breit-Rabi polarimeter
- After correction for molecular contamination in the hydrogen jet \(P_{\text{target}} \approx 92 \pm 2\% \)

- Both beams separated by \(\sim 4 \text{ mm} \) intersect the hydrogen jet target
- Elastic events are easily identified from non-relativistic equation

\[t_{\text{TOF}} = L \sqrt{\frac{m_p}{2E_{\text{kin}}}} \]

and recoil angle \(\Theta \)

DSPIN11 – September 24, 2011
Dmitri Smirnov
• Two polarimeters in each ring
• The readout system is multiplexed between the two pairs
• Each polarimeter employs six vertical and six horizontal ultra thin carbon targets
• Typical target size is 2.5 cm × 5 – 10 µm × 25 nm
• Targets are made by vacuum evaporation-condensation onto glass substrate
• Two stepping motors are used to move the assembly and to rotate the targets into the beam
p-Carbon Polarimeters: Detector Calibration

- Detectors calibrated with α source (^{241}Am, 5.5 MeV)
- The α's do not probe the surface of the detector where the carbon ions stop
 Unacounted energy losses \Rightarrow “effective dead-layer”

DSPIN11 – September 24, 2011

Dmitri Smirnov
Calibration parameters the **time offset** t_0 and the **effective dead layer thickness** x_{DL} extracted from the non-relativistic equation:

$$E_{\text{meas}} + E_{\text{loss}} = \frac{M_C}{2} \times \frac{L^2}{(t_{\text{meas}} + t_0)^2},$$

where $E_{\text{loss}} = E_{\text{loss}}(E_{\text{meas}}, x_{DL})$ is an energy loss parameterization for carbon.
Overview of RHIC Polarimeters

<table>
<thead>
<tr>
<th></th>
<th>H-jet Polarimeter</th>
<th>p-Carbon Polarimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Polarized atomic hydrogen gas jet target</td>
<td>Ultra thin carbon ribbon</td>
</tr>
<tr>
<td>Calibration</td>
<td>Self-calibrating due to known target polarization</td>
<td>Normalized to the H-jet due to unknown A_N</td>
</tr>
<tr>
<td>Event Rate</td>
<td>~ 20 Hz</td>
<td>~ 2 MHz</td>
</tr>
<tr>
<td></td>
<td>Stat. uncertainty $\sim 8%$ in 6–8 hour fill</td>
<td>Stat. uncertainty $\sim 2%$ per measurement</td>
</tr>
<tr>
<td>Operation</td>
<td>Continuous throughout a fill</td>
<td>Few minutes every few hours</td>
</tr>
<tr>
<td>Role</td>
<td>• Average beam polarization</td>
<td>• Fast online feedback</td>
</tr>
<tr>
<td></td>
<td>• Absolute normalization for p-Carbon polarimeters</td>
<td>• Beam polarization profiles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bunch by bunch polarization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fill by fill polarization for the experiments</td>
</tr>
</tbody>
</table>

DSPIN11 – September 24, 2011

Dmitri Smirnov
Fill Polarization: H-Jet Polarimeter

Blue beam $\langle P \rangle \approx 48\%$

Yellow beam $\langle P \rangle \approx 48\%$
Fill Polarization: p-Carbon Polarimeters

Blue-1

\[\chi^2 / \text{n.d.f.} = 1843 / 133 \]
\[\text{Prob} = 0 \]
\[p_0 = 48 \pm 0.1 \]

Blue-2

\[\chi^2 / \text{n.d.f.} = 2202 / 96 \]
\[\text{Prob} = 0 \]
\[p_0 = 46.93 \pm 0.12 \]
Systematics: Polarimeter-1 vs Polarimeter-2

Fill-by-fill $\frac{\Delta P}{P} \sim 3\%$

χ² / ndf 483.2 / 96
Prob 0
p0 1.012 ± 0.004

Fill-by-fill $\frac{\Delta P}{P} \sim 3\%$

χ² / ndf 414.7 / 72
Prob 0
p0 0.9801 ± 0.0034
We check normalization factors to a fixed A_N for different targets.

Thicker targets are more susceptible to orientation.

Normalization for thicker targets is consistent with larger energy losses.
Polarization in Beam Collisions

\[\langle P \rangle = \frac{\int P(x, y) I(x, y) \, dx \, dy}{\int I(x, y) \, dx \, dy} \]

\[\langle P \rangle_{\text{coll}} = \frac{\int P(x, y) I^{(B)}(x, y) I^{(Y)}(x, y) \, dx \, dy}{\int I^{(B)}(x, y) I^{(Y)}(x, y) \, dx \, dy} \]

\[\langle P \rangle_{\text{sweep}} = \langle P \rangle \]
Precise target position is not necessary if the beam is assumed to have a gaussian profile:

\[I(x) = I_{\text{max}} e^{-\frac{x^2}{2\sigma_I^2}}, \quad P(x) = P_{\text{max}} e^{-\frac{x^2}{2\sigma_P^2}} \]

\(x \) can be either time or distance.

The intensity and polarization can be related as:

\[\frac{P}{P_{\text{max}}} = \left(\frac{I}{I_{\text{max}}} \right)^R \quad \text{with} \quad R = \frac{\sigma_I^2}{\sigma_P^2} \]
Beam Polarization Profile

- Average polarization can be defined as:

\[
\langle P \rangle = \frac{P_{\text{max}}}{\sqrt{1 + R}}
\]

- Another source of systematic uncertainty comes from the profile measurements \(\langle P \rangle \) vs \(\langle P \rangle_{\text{sweep}} \)

- Fill-by-fill \(\frac{\Delta P}{P} \sim 3\% \)

- Assuming gaussian profiles polarization in collisions is:

\[
\langle P \rangle_{\text{coll}} = \langle P \rangle \frac{\sqrt{1 + R_h} \sqrt{1 + R_v}}{\sqrt{1 + \frac{1}{2}R_h} \sqrt{1 + \frac{1}{2}R_v}}
\]

- Results published online at

Analyzing Power A_N

- Good agreement between this and previous year!

HJet@RHIC
$p = 100$ GeV/c
PRD79(09)094014

Preliminary
H-Jet data @ $p = 250$ GeV:
2009 (red)
2011 (black)
Summary

- The *pp* and *pC* elastic scattering in CNI region is well suit for polarimetry in wide beam energy range
- RHIC polarimeters are non-destructive, unique, and compliment each other

- **Polarimeters performed well in 2011 run**
 - Measured beam polarization
 - Measured polarization profiles and beam polarization for the experiments
 - Estimated fill-by-fill systematic uncertainties

- **Future plans and outlook:**
 - Finalize global systematic uncertainties
 - Consider a different geometry for carbon targets as an alternative to ribbon
 - Calculate the analyzing power A_N for *pC*
Igor Alekseev
Elke Aschenauer
Grigor Atoian
Sasha Bazilevsky
Alan Dion
Haixin Huang
Yousef Makdisi
Andrei Poblaguev
Bill Schmidke
Dmitri Smirnov
Dima Svirida
Anatoli Zelenski

RHIC Spin Group web page