Measuring Polarization of Proton Beams at RHIC

Dmitri Smirnov
Brookhaven National Laboratory

for the RHIC Spin Group

June 10, 2011
Physics Objectives and Facilities

- Two operational detectors STAR and PHENIX
- Measure transverse and longitudinal spin asymmetries
- Understand gluon polarization in the proton spin structure

\[
\frac{1}{2} = \frac{1}{2} \Delta \Sigma + L_z + \Delta g
\]

\(\Delta \Sigma \sim 15\% \) – quark contribution
\(\Delta g = ? \) – gluon contribution
\(L_z = ? \) – orbital motion

- Study quark-gluon plasma

- Relativistic Heavy Ion Collider (RHIC) operational since 2000
- Provides polarized proton beams
- Wide range of energies 24 GeV to 250 GeV
- Also unpolarized heavy ion beams
 Au-Au, d-Au, Cu-Cu

TIPP11 – June 10, 2011
Dmitri Smirnov
RHIC and AGS Polarimeters

- Hydrogen jet (H-jet) polarimeter provides absolute polarization
- Four p-Carbon polarimeters provide:
 - Beam polarization profile
 - Polarization decay in store
 - Bunch and store polarization for the experiments

Polarimeter at Alternatig Gradient Synchrotron (AGS) is similar to RHIC p-Carbon polarimeter

PHENIX and STAR local polarimeters monitor spin direction at collision points
Measuring Beam Polarization

- The kinematics of elastic scattering is fully defined by the recoil products
- The momentum transfer \(t = (p_{\text{in}} - p_{\text{out}})^2 = -2ME_{\text{kin}} \)

Analyzing power \(A_N \) is defined by the interference between the electromagnetic and strong amplitudes

- In the experiment we measure asymmetry \(\varepsilon \)

\[
\varepsilon = \frac{N_L - N_R}{N_L + N_R}, \quad \varepsilon = \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}
\]

- Measured polarization \(P = \varepsilon / A_N(t) \), where \(A_N(t) \) is the analyzing power

Model predictions

TIPP11 – June 10, 2011
Dmitri Smirnov
The polarized jet target is vertical.

Target polarization cycles $\uparrow / - / \downarrow$ every 500/50/500 seconds.
Hydrogen Jet Polarimeter: Kinematics

- Both beams separated by ~ 4 mm intersect the hydrogen jet target
- The beam and the target are both protons:

$$P_{\text{beam}} = -\frac{\varepsilon_{\text{beam}}}{\varepsilon_{\text{target}}} \times P_{\text{target}}$$

- P_{target} is measured by a Breit-Rabi polarimeter
- After correction for molecular contamination in the jet

$$P_{\text{target}} \approx 92 \pm 2\%$$

- Elastic events are easily identified from non-relativistic equation

$$t_{\text{ToF}} = L \sqrt{\frac{m_p}{2E_{\text{kin}}}}$$

and recoil angle Θ

- Asymmetry $\varepsilon = \frac{N_L - N_R}{N_L + N_R}$
- Two polarimeters in each ring
- The readout system is multiplexed between the two pairs
- Each polarimeter employs six vertical and six horizontal ultra thin carbon targets
• Typical target size is $2.5\text{cm} \times 5\mu\text{m} \times 30\text{nm}$

• Targets are made by vacuum evaporation-condensation onto glass substrate

• Two stepping motors are used to move the assembly and to rotate the targets into the beam
• Detectors calibrated with α source (^{241}Am, 5.5 MeV)
• The α signal is attenuated by 5 to fit the carbon dynamic range
• The α's do not probe the surface of the detector where the carbon ions stop
Unaccounted energy losses ⇒ “effective dead-layer”
Calibration parameters the **time offset** t_0 and the **effective dead layer thickness** x_{DL} extracted from the non-relativistic equation:

$$E_{meas} + E_{loss} = \frac{MC}{2} \times \frac{L^2}{(t_{meas} + t_0)^2},$$

where $E_{loss} = E_{loss}(E_{meas}, x_{DL})$ is an energy loss parameterization for carbon
p-Carbon Polarimeters: Monitoring Stability

- Detector stability is monitored by looking at how parameters evolve in time
- Non-statistical fluctuations can be associated with machine development

- Based on the reconstructed kinematics we measure beam polarization
In 2010 the system was upgraded to address the rate problems
- Faster current sensitive preamplifiers replaced charge sensitive ones
- The effective signal width decreased from few 10's ns to \(\sim 10 \) ns
Solving Problems: t_0 Time Offset

- To monitor the time offset t_0 additional scintillators were installed.
- The PMT gain is adjusted to match prompt MIPs.

Final conclusion is to be made on the benefits for the future use.
• Precise target position is not necessary if the beam is assumed to have a gaussian profile

\[I(x) = I_{\text{max}} e^{-\frac{x^2}{2\sigma_I^2}}, \quad P(x) = P_{\text{max}} e^{-\frac{x^2}{2\sigma_P^2}} \]

\(x \) can be either time or distance

• The intensity and polarization can be related as

\[\frac{P}{P_{\text{max}}} = \left(\frac{I}{I_{\text{max}}} \right)^r \quad \text{with} \quad r = \frac{\sigma_I^2}{\sigma_P^2} \]
• Special ramp-up/ramp-down study confirmed the widening of the polarization profile
• Note: The “400 GeV” point corresponds to actual energy of 100 GeV after a ramp-down from 250 GeV
Overview of RHIC Polarimeters

<table>
<thead>
<tr>
<th></th>
<th>H-jet Polarimeter</th>
<th>p-Carbon Polarimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Polarized atomic hydrogen gas jet target</td>
<td>Ultra thin carbon ribbon</td>
</tr>
<tr>
<td>Calibration</td>
<td>Self-calibrating due to known target polarization</td>
<td>Normalized to H-jet due to lack of direct energy scale calibration</td>
</tr>
<tr>
<td>Event Rate</td>
<td>~ 20 Hz</td>
<td>~ 2 MHz</td>
</tr>
<tr>
<td></td>
<td>Stat. uncertainty $\sim 8%$ in 6–8 hour fill</td>
<td>Stat. uncertainty $\sim 2%$ per measurement</td>
</tr>
<tr>
<td>Operation</td>
<td>Continuous throughout a store</td>
<td>Few minutes every few hours</td>
</tr>
<tr>
<td>Role</td>
<td>• Average beam polarization</td>
<td>• Fast online feedback</td>
</tr>
<tr>
<td></td>
<td>• Calibration for other polarimeters</td>
<td>• Beam profile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bunch by bunch polarization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Store by store polarization for the experiments</td>
</tr>
</tbody>
</table>
Summary

- *pp* elastic scattering in CNI region is well suited for polarimetry in wide beam energy range
- RHIC polarimeters are non-destructive, unique, and complement each other
- Upgrade for Run 2011 eliminated some problems
 - The benefit from the prompt monitors is under investigation
- Polarimeters provide feedback for the accelerator team:
 - Beam emittance
 - Horizontal and vertical beam polarization profiles
 - Polarization loss in transfer
 - Beam polarization decay
- Currently all polarization measurements rely on the H-jet polarimeter
 - Desired redundancy in polarization measurement can be achieved if p-Carbon polarimeters are calibrated by other means
- An ongoing effort aims to better understand the systematic effects in polarization measurements
Igor Alekseev
Elke Aschenauer
Grigor Atoian
Sasha Bazilevsky
Alan Dion
Haixin Huang
Yousef Makdisi
Andrei Poblaguev
Bill Schmidke
Dmitri Smirnov
Dima Svirida
Anatoli Zelenski

RHIC Spin Group web page