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1 Introduction1

In this study we propose to measure the asymmetry of the vector bosons produced in transversely2

polarized proton collisions at STAR. First, we focus on the W bosons decayed into a lepton pair3

(W± → e±νe). However, most of the developed formulae can be used in the measurement of Z4

boson asymmetry, and we will consider this case later. From the measured asymmetry it is possible5

to verify theoretical expectations about the sign change of the Sivers function in Drell-Yan and6

SIDIS interactions:7

fSIDIS
q/h↑ (x, k⊥) = −fDY

q/h↑(x, k⊥). (1)

The single spin asymmetry (SSA) AN for the W bosons and the lepton l from the W decay has8

been derived in [2, ?]. It is parametrized based on the fits of SIDIS data and given as a function9

of direction and transverse momentum. For the case of W we have:10

AW
N = AW

N (yW , ϕW , qT ) ≡ AN(y, ϕ, pT ) = AN(Ω, pT ), (2)

where Ω = {y, ϕ} is simply used as a shorthand for the direction of the particle in the lab frame.11

Similarly, for the lepton the expectated asymmetry depends on the direction of the lepton and its12

transverse momentum:13

Al
N = Al

N(ηl, ϕl, pT ) ≡ AN(y, ϕ, pT ) = AN(Ω, pT ) (3)

2 Experimental Viewpoint14

For the SSA measurements we are interested in the proton interactions p↑/↓p → W± → e±νe15

in which the spin direction of one of the protons is irrelevant, i.e unpolarized protons. In the16

experiment we can separately measure full and differential cross sections for spin-up (σ↑), spin-17

down (σ↓), and unpolarized (σ0) interactions which are related as:18

σ↑ = σ0(1 + AN), (4)

σ↓ = σ0(1− AN). (5)

In the following we assume that the polarization vector does not significantly deviate from the19

vertical direction given by the normal unit vector n⃗ along the vertical y axis so, the notation is20

P ≡ P⃗ · n⃗. We also assume the same magnitude of the polarization vector for spin-up and spin-21

down bunches, i.e. P = P↑ = P↓. For unpolarized cross section σ0 ≡ (σ↑ + σ↓)/2 the asymmetry22

AN is expressed as:23

AN =
σ↑ − σ↓

σ↑ + σ↓
. (6)

The number of recorded events in which the particle is produced with momentum pT at angle24

Ω is:25

dN↑/↓

dΩdpT
(Ω, pT ) = L↑/↓

dσ0

dΩdpT
(Ω, pT )ε(Ω, pT )

(
1± AN(Ω, pT )P

)
, (7)
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where detection efficiency ε does not depend on the spin direction of the interacting proton. In1

fact, individual events can be tagged by the nominal spin of colliding protons. We thus can bin2

all collected data in four bins N↑↑, N↑↓, N↓↑, and N↓↓. For the SSA measurement the polarization3

of one of the beams is ignored by combining the yields with opposite spins, e.g.4

N↑ ≡ N↑0 = N↑↑ +R 0↑
0↓
N↑↓, (8)

N↓ ≡ N↓0 = N↓↑ +R 0↑
0↓
N↓↓, (9)

where re-weighting factor R 0↑
0↓

addresses a possible relative difference in the spin-up and spin-down5

intensities of the other beam. Studies have shown that R 0↑
0↓

≈ 1 with good precision.6

We bin our data sample in three observable variables {y, ϕ, pT} with center and width of the7

i-th bin being {yi, ϕi, pT,i} and {∆yi,∆ϕi,∆pT,i} ≡ {∆Ωi{yi,∆ϕi},∆pT,i} ≡ ∆i respectively. The8

number of events in each bin, Ni, is calculated by integrating both sides of (7) within the bin:9

N↑/↓,i =

∫
∆i

dN↑/↓

dΩdpT
dΩdpT . (10)

In that bin we assume the average value:10

AN,i =
1

∆i

∫
∆i

ANdΩdpT , (11)

and similarly for the cross section (σ0,i) and efficiency (εi). Finally, for the yields in each bin we11

can write:12

N↑/↓,i = L↑/↓σ0,iεi∆Ωi∆pT,i (1± AN,i(Ω, pT )P ) (12)

The spacial distributions of the physical asymmetry and the cross sections are the same for13

the spin-up and spin-down interactions with respect to the spin direction. We can use this fact to14

easily get rid of the quantities of no interest in (12). This is achieved by constructing geometric15

means
√
N↑(ϕi)N↓(ϕi + π) and

√
N↑(ϕi + π)N↓(ϕi) of the yields16

N↑(ϕi) = L↑σ0(ϕi)ε(ϕi)∆Ωi∆pT (1 + AN(ϕi)P ) (13)

N↑(ϕi + π) = L↑σ0(ϕi + π)ε(ϕi + π)∆Ωi∆pT (1 + AN(ϕi + π)P ) (14)

N↓(ϕi + π) = L↓σ0(ϕi + π)ε(ϕi + π)∆Ωi∆pT (1− AN(ϕi + π)P ) (15)

N↓(ϕi) = L↓σ0(ϕi)ε(ϕi)∆Ωi∆pT (1− AN(ϕi)P ) (16)

Using the relations for the asymmetry and cross section AN(ϕi + π) = −AN(ϕi), σ0(ϕi + π) =17

σ0(ϕi) we get for AN18

AN,i =
1

P

√
N↑(ϕi)N↓(ϕi + π)−

√
N↑(ϕi + π)N↓(ϕi)√

N↑(ϕi)N↓(ϕi + π) +
√
N↑(ϕi + π)N↓(ϕi)

(17)
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3 Correction for Background1

In this analysis an optimal set of cuts is applied to select signal enriched events without significant2

loss in the final statistics. The final yields include some fraction of background events fB which3

along with the signal asymmetry contribute to the measured asymmetry AN . In order to extract4

the signal asymmetry we decompose AN as following:5

AN = fsigA
sig
N + fBA

B
N , (18)

with fsig = 1 − fB. The last term in (18) may include contributions from various backgrounds6

which will be discussed later. The background fractions and asymmetries have to be estimated in7

order to extract the final asymmetry of the signal:8

Asig
N =

AN + fBA
B
N

1− fB
(19)

4 Sivers Sign Change Extraction9

A binned likelihood method can be used to check the sensitivity of our data to the sign of the Sivers10

function. A direct way of doing this is to compare the measured asymmetry (17) with background11

corrected expectations from (18). The signal asymmetry Asig
N in this case directly comes from the12

model predictions (2) or (3). The simplest likelihood function can be constructed as a product of13

gaussian terms over all bins:14

L =
∏
i

G(AN,i, σAN,i
;Asig

N,i). (20)

Alternatively, the Sivers sign can be extracted from the Poisson probabilities of measured given15

the expected yields.16

L =
∏
i,↑,↓

P (Ni;N
sig
i +Bi). (21)

While this method is more “classic” it requires the explicit knowledge of luminosity, unpolarized17

cross section, and efficiencies. These values are needed to calculate the expected number of events18

using (12). The two methods are expected to give consistent results. However, the difference can19

be more perceptible when systematic effects are taken into account.20

5 Reconstruction of W Kinematics21

In order to fully reconstruct the W kinematics the momenta of all W decay products must be22

measured. The neutrino produced in the leptonically decayed W cannot be measured in our23

detector. The momentum of the neutrino can only be indirectly deduced from conservation of24

the total momentum. In the transverse plane the initial momentum of the system of interacting25

partons is negligible and so must be the vector sum of all final particles momenta. We define the26

missing transverse energy as a vector restoring the balance in the event:27

#»

E̸T = −
∑

i∈jets,
tracks,
clusters

#»

P i,T . (22)
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In a typical collider detector like STAR the problem with measuring the longitudinal component1

of the missing energy is that the total particle momentum along the beam direction is not measured2

due to particles with very high rapidities escape the detector. However, in the W events produced3

at 250 GeV at STAR we can assume that most of the
#»

E̸T is due to the neutrino from the W4

decay. The assumption p⃗ν,T ≈ #»

E̸T is based on the fact that only very little energy is left for5

anything other than W production from the primary hard scattering. At the same time, the beam6

remnants with high longitudinal momentum carry away only a little portion of the total transverse7

momentum. With an assumption that the boson is produced with mass MW we can reconstruct8

the z component of the neutrino’s momentum. For the invariant mass we have:9

M2
W = (El + Eν)

2 − (p⃗l + p⃗ν)
2, (23)

M2
W/2 = |p⃗l||p⃗ν | − p⃗l,T · p⃗ν,T − p⃗l,z · p⃗ν,z, (24)

where we neglected the masses of the both neutino and lepton. Introducing a shorthand expression10

for A = M2
W/2 + p⃗l,T · p⃗ν,T , after trivial arithmetics we arrive to a quadratic equation for pν,z:11

|p⃗l,T |2p2ν,z − 2Apl,zpν,z + |p⃗ν,T |2|p⃗l|2 − A2 = 0. (25)

This equation has two solutions:12

pν,z =
Apl,z ±

√
A2p2l,z − |p⃗l,T |2(|p⃗ν,T |2|p⃗l|2 − A2)

|p⃗l,T |2
(26)

6 Preliminary Sensitivity Studies13

In 2011 transversely polarized proton-proton beams were brought into collisions at STAR with a14

center of mass energy of 500 GeV . In this regime the W is expected to have a relatively small15

PT ∼ 2 GeV as confirmed by a Monte-Carlo simulation in Figure 1. We use PYTHIA 6.8 to16

simulate W± → e±νe to the LO with unpolarized beams. Expected kinematic distributions of the17

lepton coming from the W decay is shown in Figure 2.18

Most of the recoil tracks in the BARREL region are expected to carry a very small fraction of19

the energy as shown in fig. 3.20

We can use MC to correct for the missing PT in the recoil tracks due to the limited acceptance21

of the STAR detector. Such a procedure will introduce a model-dependent systematic which will22

grow with the value of the correction.23

We estimate the statistical power of the AN measurement for an integrated luminosity of24

300 pb−1. As a basis we use the total W± and Z0 yields observed at STAR in Run 9. The W25

and Z candidate events, Nobs, along with the backgound numbers, Nbkg, are borrowed from the26

earlier STAR analysis [1] that reported the production cross section using ≈ 13 pb−1 of inegrated27

luminosity:28

NW+ = 496− 37 = 459,

NW− = 148− 26 = 125,

NZ = 13− 0 = 13.
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Figure 1: Expected distribution of the transverse momentum of the produced W boson, PW
T .

To reflect the expected increase in the integrated luminosity we scale the above numbers a1

factor ≈ 23. In order to illustrate the sensitivity of the future measurement to the non-vanishing2

W and Z AN we calculate the relative yields in bins of the boson rapidity from the MC sample.3

The expected statistical power of AN in bins of W rapidity is shown in Figure 4 for W+ and W−
4

respectively compared with theoretical prediction from [2].5

7



W_mass
Entries  125250
Mean    79.99
RMS     3.971

WM
60 70 80 90 100 110 120
0

5000

10000

15000

20000

25000

W_mass
Entries  125250
Mean    79.99
RMS     3.971

W mass
W_theta

Entries  125250
Mean    1.574
RMS     1.402

Wθ
0 0.5 1 1.5 2 2.5 3

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

W_theta
Entries  125250
Mean    1.574
RMS     1.402

polar angle

W_pseudorapidity
Entries  125250
Mean   -0.003663
RMS     3.352

W
η

-6 -4 -2 0 2 4 6

500

1000

1500

2000

2500

W_pseudorapidity
Entries  125250
Mean   -0.003663
RMS     3.352

no cuts
|<1

lep
η|

pseudo-rapidity
l_angle

Entries  125250
Mean    1.572
RMS    0.7667

lepθ
0 0.5 1 1.5 2 2.5 3

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200
l_angle

Entries  125250
Mean    1.572
RMS    0.7667

electon

neutrino

lepton angle

l_pseudorapidity
Entries  125250
Mean   -0.003162
RMS     1.068

lep
η

-6 -4 -2 0 2 4 6
0

1000

2000

3000

4000

5000

6000

7000

8000
l_pseudorapidity

Entries  125250
Mean   -0.003162
RMS     1.068

lepton pseudo-rapidity
recoil_tracks_pseudorapidity

Entries    2.007787e+07
Mean   -0.0003403
RMS      2.71

track
η

-6 -4 -2 0 2 4 6
50

100

150

200

250

300

350

3
10× recoil_tracks_pseudorapidity

Entries    2.007787e+07
Mean   -0.0003403
RMS      2.71

recoil tracks pseudo-rapidity

Figure 2: W-mass; polar angles and pseudo rapidity distributions of the produced W, the decay
leptons and the recoil tracks.
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(a) W+ (b) W−

Figure 4: Expected statistical uncertainties for measured asymmetry AN of W+ (a) and W− (b)
decaying leptonically at STAR as a function of the boson’s rapidity.
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