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Abstract

At the Relativistic Heavy Ion Collider (RHIC) measurements of the proton beam
polarization are conducted by inserting an ultra thin carbon ribbon in the beam and reg-
istering the scattered carbon ions with silicon detectors. The polarization value reported
by the proton-carbon polarimeters strongly depends on the correct measurement of the
energy deposited in the detectors by the recoil products. In this note we present a study
of the response of the silicon detectors to a-particles employed to calibrate the detectors.

1 Motivation

The RHIC polarimetry is based on the measurement of the recoil products from elastic scat-
tering of the proton beam on a fixed target in the Coulomb nuclear interference (CNI) energy
regime. In this study we focus on the four p-Carbon polarimeters with ultra thin carbon targets
which can be moved through the beam. In the current setup the polarization of each proton
beam can be measured independently by two p-Carbon polarimeters installed in the “yellow”
and “blue” accelerator rings.

During the 2013 run we observed significant changes in the gain in some of the silicon
detectors. This change of < 20 % is worrisome and may cause significant systematic change in
the reported polarization values due to a steep slope in the p-Carbon analyzing power within
the energy range of interest.

2 Measurement and Results

The detectors produced by the BNL instrumentation group have 12 one-millimeter silicon strips
operating under the nominal bias voltage of 110 V. The detector gains are normally monitored
by taking calibration runs when there is no beam in the machine. Starting April 3, 2013 the
calibration runs were taken automatically at the end of every RHIC store immediately after the
beam dump. This approach allowed us to track the changes in detector properties at a more
precise level than before. Although we primarily focus on the Run 13 data we also analyzed
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the data from a-calibration runs in Run 12. The same analysis procedure was performed on
Run 12 data as well (see Appendix A). Because alpha runs weren’t taken as frequently during
Run 12, resulting plots for it don’t have as much statistics as the plots for Run 13. The analysis
of the data was performed with the cnipol package [1].

2.1 Energy calibration with a-particles

In order to perform a polarization measurement we need to measure the energy of the slow
carbon ions coming from the fixed target. The calorimetry is done by utilizing the silicon
strip detectors introduced above. We observe that signals coming from the detectors have the
same shape. Thus each signal can be parametrized with only one parameter. We use that
parameter to reconstruct the energy of the recoil particle. As of Run 2013 the data from
pCarbon polarimeters comes in a form of a two quantities: the maximum amplitude and the
total charge (i.e. integral). On the contrary, H-Jet data comes in full waveforms. In agreement
with signals affinity, we observe a very good correlation between the maximum amplitude and
the integral of the collected charge. Our choice of the former is only set by convention. For the
energy calibration purposes we use low intensity 2! Am and **Gd radioactive sources emitting
a-particles with fixed energies of Ex,, = 5.486 MeV and Egq = 3.183 MeV|[2] respectively. The
sources are put inside the vacuum of the beam pipe in the direct acceptance of the detectors.
In 2012 and 2013 two polarimeters, Y1D and B1U (see Figure 3), were supplied with 2*!Am
sources only, while the other two, Y2U and B2D, had, in addition, “8Gd sources installed
inside the polarimeter chambers. Prior to 2012 only the americium sources were available for
calibration.

The energy of the a-particles is few times higher than that of the carbon ions reaching the
detectors. We reduce the output signal by means of attenuators by a factor of five to bring
it back to the range where the amplitude can be digitized by the readout electronics. In the
absence of the beam we observe clean peaks from the radioactive sources as shown in Figure 16a.
The peaks positions are determined using a gaussian function fit.

The current offline analysis is only based on a calibration with the ! Am source. The
nominal detector gain ga,, is defined as a ratio of the peak position, pam, to the Fa, energy.
This definition completely ignores possible energy losses before the sensitive detector region.
This limitation can be overcome to some extent by using a second a-source. With two sources
the slope of a linear calibration curve effectively takes into account the unresponsive region of
the detector as illustrated with a sketch in Figure 1. This region is referred to as the dead layer,
and we discuss it in the next section.

Figure 4 shows how the americium gain ga, developed in time for all four p-Carbon po-
larimeters. From this we conclude that overall gain was stable on a monthly scale with only few
detectors showing up to 20% instabilities in the gain. We also confirm an overall stability by
looking at the ratio of the gain estimate for the polarimeters with an additional *#Gd source.
These quantities as a function of time are shown on Figure 5.

2.2 Effective dead layer

In our current model of the silicon detector the incident particles are assumed to pass through
a region where the detector has zero response as a calorimeter, i.e. the dead layer. Adding a
gadolinium alpha source to the setup allows us to put one more calibration point on our cali-
bration curve (see Figure 1). With the points corresponding to the americium and gadolinium
sources we can estimate the thickness of this layer.

The energy where the linear fit intersects the horizontal axis gives us an estimate for the
initial energy of incident a-particles which would deposit all of their energy in the dead layer.
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(a) Missing energy Epr, can be defined in the ap- (b) Dead layer size xpy, is a difference between the
proximation of energy deposition independent of distance that particle traveled trough the matter
the particle energy. Ziotal and a distance on which the deposited energy
was being registered by the detector Ziegistered-
Gain relation ¢ = gam = ¢gagq is assumed. The
linear regression gives us Equation (3). Note that
the result does not depend on the value of gain g.

Figure 1: Definition of Fpj, and zpy, in terms of linear regression over two points corresponding
to two alpha sources.
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Figure 2: Schematic view of the detector alignment in the plane perpendicular to the beam.
Carbon strip target is aligned vertically, detectors are aligned at angles 45°, 90°, 135° to it.
The beam points into the figure perpendiculary.
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Figure 3: Schematic view of polarimeters placement around IP12.



% 0.16 | 0003981174 % 0.165 . O [einar oonsserssr
3 r 1 [s0  osennzoom0mes < r 1 [s0 0136520000378
g8 T - [ Fmra——
<— 015 E . 1 | 01371+ 0,0004387 <— 015 o -] |70 0136 s00004747
£ con i 1 [emer oooserine £ o N 1 [ermer oo
[ [ r
o 014r £ 1 [0 s soommer o 014r T e oersoooomens
‘C 013] PO 01438 +0,0002051 ‘C 013] PO 01326 00008269
@ o 1 [emsr oowmsiie 5] o 1 [emsr oosis
g 0.12He ] |eo o1s01:00007222 g 0.12[]e= 4 leo  ouserso0o0sesr
::;:: i P~ ::;:: Bt R
0.11C L i - b0 01356 +0.0004914 0110 Do ' . : | p0 01274 0.001015
i 03/01/13 03/31/13 04/30/13 05/30/13 06/29/13 07/29/13 i 03/01/13 03/31/13 04/30/13 05/30/13 06/29/13 07/29/13
(a) B1U (b) Y1D
%) 0.16F | xeinor 0,004036 /186 %) 0.16F ] | x/ndt 0.0006899 /181
=3 C ] |p0 01381+ 00003008 < C ] |ro 014100001447
Q Eo . 1w ] 8 B S P —
< 015 Eo 2 0.1343 £ 0.0007844 < 0.15 e 1 [ 0.1292 + 0.0006829
@ C . 2 [ C ¥
S o4f o I RN B~ G RVt 4
g : : X*/ ndf 0.01001 /171 g : ; X2/ ndf 0.007781 /181
S 043F . ; i 1 |oo o100 S 043F | | b0 01424 +0000486
@ . . 3 [ oouseres @ o ’ . 1 [wmer cowseres
g 0.12 o 8 L ] [0 0137300006465 g 0.12 H-omz . 3 i 1l 01308 s0000m7zs
[l-o 5 4 1 e oomerm o AN 3 I em——
o1 H o= | B . 1 w0 oxara s ocooms 011 Hooms ] ¥ . 1 w0 osasesocooeiss
i 03/01/13 03/31/13 04/30/13 05/30/13 06/29/13 07/29/13 i 03/01/13 03/31/13 04/30/13 05/30/13 06/29/13 07/29/13
(c) B2D (d) Y2U

Figure 4: Time dependence of the detector gain ga,, as measured with a-particles emitted by
the 2! Am source. Colors represent individual detectors.

While this quantity by itself can be used to monitor the stability of the effective dead layer
over time, we also present the result in pg/cm?. For the latter, we assume that the detector
response to the both incident energies is the same, and we write:

HAm _ HGd (1)
Eam — ERY Egqg— EDY
where fia, and pgq are the mean values of the alpha peaks measured in ADC units, Fa,, and
FEcq are the incident energies of a-particles, and ERY and EDY are the energy losses in the dead
layer for the respective alpha sources.

The rate at which a-particles loose their energy in the detector changes with the penetration
depth. The value of stopping power can be easily derived from the CSDA range'values available
at the ASTAR Database[3].

The original CSDA range data for a-particles is displayed in Figure 6a. If we take CSDA
range value for the £ = Ej,, and E = Egq we will get maximal penetration depths 2%,

dE

28, Penetration depth is then calculated as z; = 2) — CSDA range. Stopping power —

can be then derived from E vs z; points using simple numerical differentiation formula % =
(fix1 — fi)/(xix1 — x;). The resulting plot for stopping power versus penetration depth can
be seen in Figure 6b. This plot is consistent with the other plot[!] of the same dependency,
derived from the data from the same ASTAR Database, but using a different method.

!The CSDA range is a very close approximation to the average path length traveled by a charged particle as
it slows down to rest, calculated in the continuous-slowing-down approximation. In this approximation, the rate
of energy loss at every point along the track is assumed to be equal to the total stopping power. Energy-loss
fluctuations are neglected. The CSDA range is obtained by integrating the reciprocal of the total stopping
power with respect to energy. — ASTAR Appendix: Significance of Calculated Quantities



£ ' [ermor ooososs /s
I 101 ] |0 ossss0000s0es
o i =
= - o | xernot 001446 /161
8 bl 1 |w0 ooz oo00sezs
| n ~ |emat oosrsasie
o - ~
S i |0 0.047 z0.001083
0.99 ¥
Lo oo b X2/ ndf 0008278/ 181
e - s
F (= 0 098722 0.0005013
0.98 -
.98~ ]
u Y 001403 /181
[=oex ]
097l otz |0 00937 x 00008526
oot 1 [ oomesnm
- ers
Dets 1 0 o891+ 00008611

03/01/13 03/31/13 04/30/13 05/30/13 06/29/13 07/29/13

(a) Time dependence of the ratio of the gains,
9Gd/9Am, independently measured with 148Gd and
241 Am sources for Y2U polarimeter.
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(b) Time dependence of the ratio of the gain
measured with both 2*'Am and 8Gd sources to
the nominal gain measured with only the 24! Am
source for Y2U polarimeter.
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(¢) Time dependence of the ratio of the gains,
9Gd/gam, independently measured with 148Gd and
241 Am sources for B2D polarimeter.
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(d) Time dependence of the ratio of the gain
measured with both 2! Am and 8Gd sources to
the nominal gain measured with only the 24! Am
source for B2D polarimeter.

Figure 5: Comparison of the effective detector gains calculated with either one or both a-sources
for the polarimeters equipped with two alpha sources. Colors represent individual detectors.
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Figure 7: Epp (see Figure la) is the missing energy value extracted from linear fit of the
americium and gadolinium points.
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Figure 8: xpy, is the effective dead layer thickness calculated using formula (3).

As the dead layer is relatively thin (less than 1 ym) a-particles do not loose a significant
fraction of their initial energy and the stopping power is approximately constant over this range.
With a linear approximation for the total losses we have:

EADrIr; ~ IDLAAm EGD(% ~ ZEDL)\Gd (2)

with values for the stopping power Ay, = 140 keV/um and Agq = 190 keV /um taken from the
plot on Figure 6b at z = 0. Combining Equations (1) and (2) we obtain the following formula
for the size of the effective dead layer:

Ty — pcakam — pamEcd (3)
HGdAAm — PAmAGd
This formula could be also realized as a linear regression fit of the plot at Figure 1b.
The thickness of the dead layer thus extracted from the all available calibration runs in
Run 13 are shown in Figure 8. The average size of the effective dead layer is estimated to be

within 80 to 100 ug/cm?.

2.3 Bias current

In Figures 5, 7 and 8 there are few measurements taken before and after run13. When comparing
these measurements with the measurements taken during the run we see that later are showing
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Figure 11: Bias current versus dead layer size dependency.

much higher spread. We investigate this abnormality by looking at correlations with other
detector work parameters.

One of the work parameters of our silicon detector that we measure is a bias current — current
constantly flowing through detector (in this case — set of 12 strips). Current was measured for
each of the six silicon detectors on all polarimeters, measurements were taken each five minutes.
Values lie mostly in range from —30 to 0 pA. It was interesting to see how this current affects
calibration characteristics of our detector. For example, it is known that higher bias voltage
should decrease size of depleted zone, i.e. decrease size of effective dead layer. On our plots
(Figure 11) we see some weak correlation between effective dead layer size and bias current.

Much stronger correlation is seen when we compare the bias current with the gain (Fig-
ure 12). We use this correlation to produce linear model to correct our alpha gains to their
values at zero bias current. The resulting plot is presented at Figure 13. Unlike original plot
at Figure 13 this one shows lower spread and small yet notable decline over time.

We assume that presented dependence of alpha gain on bias current holds true during the
sweep measurements. Study of the dependence of carbon energy spectrum slope over bias
current [5][0] shows that this is likely to be true in our case. As we see in Figure 15 the bias
current may change very quickly during the fill, what should cause changes to the effective
alpha gain. Correction similar to the one described in the previous paragraph should be then
applied.

We also tried to see if the variation of the bias current correlates with the beam properties.
To do that we took average of the beam intensity values at a plateau (values > 50-10! protons)
of the fill happened before the alpha measurement. That value was then plotted versus the
bias current as shown at Figure 14.

2.4 Linearity of the amplifiers

The signal generated in the detector propagates through several stages of amplification. Lin-
earity of the downstream amplifiers can be checked by attenuating the signal in a place on the
signal path preceding the amplification, and then comparing the measured reduced amplitude
with the expected one properly scaled by a known factor.

The shaper boards have a resistive divider with a multiplexer controlled by software settings.
For normal polarization measurements of sub-MeV carbon ions the on-board attenuator is set
to 1, i.e. no signal attenuation. During regular alpha measurements the attenuator is set to
1/5. In this study we check the other two attenuator settings of 1/10 and 1/3. The alpha
peaks obtained with these attenuator settings are shown in Figure 16 and the mean values
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Figure 13: Time dependence of the detector gain ga,, that was corrected to zero bias current
using the slope from Figure 12.
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Figure 15: Bias current variation in Y1D detector during fill 17384. Some jumps coincide with
polarization measurements.
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corresponding to the gaussian fits are listed in Table 1. Note that with the attenuator setting
of 1/3 the americium peak ends up in the overflow bin as the events are outside of the detector
dynamic range. The cumulative effect of a possible non-linearity in the amplified signal is
checked by using the relation in which the mean of the peak is expected to scale with the
attenuator settings:

A1/ A2 = pia/pa. (4)

Table 1: The mean positions of the 2! Am and “®Gd a-peaks with different attenuator settings.

Attenuation A Alpha Run Id Am Mean, ADC Gd Mean, ADC
% atten_1_over_ 10.yel2.alpha0 77.0+0.7 44.2 +0.4
2 13_310713.yel2.alpha0 154.9 £2.7 889+15
% atten_1_over_ 3.yel2.alpha0 — 149.4 + 2.5

This effect relative to one of the attenuator settings can be defined as Al = i;—:‘j — 1. For the

three pairs of measurements we calculate very small deviations from the linear Equation (4).
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Figure 16: Alpha peaks as seen with different on-board attenuator settings (Y2U).

3 Conclusions

Based on the analysis presented in this note we establish that the changes in the bias currents
in our silicon detectors heavily depend on the beam activity in RHIC. At the moment, we
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do not see that the bias current correlates with the beam intensity (Figure 14) but in further
studies we plan to investigate if other beam or machine parameters have direct impact on the
detectors.

We observe a strong correlation between the gain and the bias current. This variation goes
as high as ~ 20 — 40% on the operational bias current span (Figure 12). We believe that
the entire analysis may benefit from a correction addressing such time-dependant fluctuations.
However, implementing it at the moment is not feasible due to the fact that the bias current
measurements are taken only once each five minutes. This is enough to determine the average
bias current for 20-minute long alpha runs, but a regular sweep polarization measurement takes
only a few seconds. It is not unusual for the bias current to change significantly simultaneously
with the sweep measurement (Figure 15). We believe that it would be better to have more
frequent bias current measurements in the future.

The presence of the two a-sources in the polarimeters allowed us to find a correction for the
effective detector gain by taking into account dead layer energy losses. We find this correction
(Figure 5) to be at =~ 5% level with respect to the nominal calibration procedure with one
radioactive source. In addition, we estimate the thickness of the effective dead layer to be
~ 80 pg/cm?. This number disagrees with the value extracted from the nominal “banana”
fit to the carbon data where the effective dead layer is estimated to be ~ 35 pug/ecm? and the
value of 1500 A (~ 35 pug/cm?) provided by instrumentation group. A possible explanation for
this discrepancy is that we overestimate the effective dead layer thickness as measured with
a-particles by not taking into account the extra material of the protective coating of the alpha
source.

Comparing the detector gains measured before and after the beam time we conclude that
there was no significant radiation damage of the detectors.

A similar study has been performed for the 2012 data. The corresponding plots can be
found in Appendix A.
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A Appendix: Runl2 plots
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Figure 17: Time dependence of the detector gain ga,, as measured with a-particles emitted by
the 2! Am source. Colors represent individual detectors. (runl2_ alpha)
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Figure 20: xpy is the effective dead layer thickness calculated using formula (3). (runl2_ alpha)
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Figure 22: Bias current versus americium gain (pam/Fam) dependency. The colors represent
different detectors. (runl2 alpha)
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