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Polarized Protons in RHIC 2
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Improvement in Beam Polarization 3

Consistent improvement in delivered luminosity 
and beam polarization.

Beam energies:

up to 255 GeV

Figure of merit for double 
helicity observables:

~ℒ ⋅ 𝑃4

recent RHIC run 2015



𝐴𝑁 =
𝑑𝜎𝑙𝑒𝑓𝑡 − 𝑑𝜎𝑟𝑖𝑔ℎ𝑡
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Polarization & Asymmetries 4

(*) perpendicular to polarization vector

(elastic scattering)



Carbon polarimeters

Two per ring

Fast measurement

𝛿𝑃/𝑃 ≈ 4%

Beam polarization profile

Polarization decay (time dependence)

Hydrogen jet polarimeter

Polarized target

Continuous operation

𝛿𝑃/𝑃 ≈ 5 − 8% per fill

normalization
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atomic hydrogen target

proton beam
100/250 GeV

Si strip detectors
≈ 75 cm from interaction point

Recoil proton from elastic scattering

Independent of beam energy, species

Elastic Recoil Protons 6

Non-relativistic: 𝑇𝑘𝑖𝑛 =
1

2
𝑚𝑣2

detector
thickness

target width: 𝜎𝑇 = 0.3 cm
bunch length: 𝜎𝐵 = 1.0 ns



Detector Setup 7

INNER OUTER
≈1

0
 cm

12 strips
3.75 mm each

75 cm

Set of eight Hamamatsu Si strip detectors

12 strips, each 3.75 mm wide, 500 μm thick

Uniform dead layer ≈ 1.5 μm

≈ 0.7 cm

𝑇𝑘𝑖𝑛 (MeV)

𝛿 𝐴
𝐷
𝐶
(a
.u
.)

example detector



QA: Kinematics 8

Elastic proton recoil selection:

After energy and 𝑇0 calibration

𝑀𝑚𝑖𝑠𝑠 −𝑚𝑝 < 100 MeV/𝑐2

Δ𝑡 < 5 ns

Fit to ALL data, plotted 
under the distributions 
in each detector

Si-strips:
red – central to 
blue – downstream 

example fill



Detector Alignment 9

Magnetic holding field for target polarization changes 
acceptance of detectors on left and right sides

Outer correction field is adjusted for compensation

For missing proton mass:

sin 𝜃 =
𝑝′

2 ⋅ 𝑚𝑝 ⋅ 𝑝𝐵
(2 ⋅ 𝐸 + 2 ⋅ 𝑚𝑝 − 𝑇𝑅)

Compare with geometry of
detector (averaged over 12 strips)

p+Au and p+Al operation had a
significant beam angle on the
jet target

example detector

Missing mass:

𝑀𝑚𝑖𝑠𝑠
2 =

𝐸 +𝑚𝑝 − 𝐸′

𝑝𝐵 − 𝑝′

2

Non-relativistic recoil:

𝑝′ = 2𝑚𝑝𝑇𝑅
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𝑃𝐵𝑒𝑎𝑚 = −
𝜀𝐵𝑒𝑎𝑚
𝜀𝑇𝑎𝑟𝑔𝑒𝑡

𝑃𝑇𝑎𝑟𝑔𝑒𝑡

❶

Polarization independent background

𝜀 =
𝑁↑−𝑁↓

𝑁↑+𝑁↓+2∙𝑁𝑏𝑔
⇒

𝜀𝐵

𝜀𝑇
=

𝑁𝐵
↑−𝑁𝐵

↓

𝑁𝑇
↑−𝑁𝑇

↓

❷

Polarization dependent background

𝜀 =
𝜀𝑖𝑛𝑐 − 𝑟 ∙ 𝜀𝑏𝑔

1 − 𝑟
background fraction 𝑟 = 𝑁𝑏𝑔/𝑁

from Breit-Rabi
measurement

Asymmetries & Polarization 10

𝜀 = 𝐴𝑁 ∙ 𝑃

measure
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Signal & Background I 11

Abort gaps are not aligned at polarimeter location

Use abort gaps for background and clean signal identification
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Signal & Background II 12

𝑀𝑚𝑖𝑠𝑠 −𝑀𝑝 < 50 MeV/𝑐2

𝑀𝑚𝑖𝑠𝑠 −𝑀𝑝 > 120 MeV/𝑐2

Example (logarithmic z-scale)

Δ𝑡: difference of measured time-
of-flight to elastic signal, 𝑡(𝑇𝑅)

Δ𝑚𝑚𝑖𝑠𝑠: difference of missing 
mass to scattered proton 
(geometry after alignment 
correction)

Position of elastic proton signal is 
independent of energy and detector

Vertical stripes are a remnant of the 
spatial detector resolution

Punch through cuts are already applied

Define signal and background regions by 
missing mass



Signal & Background III 13

 inclusive (normalized to peak)

𝑀𝑚𝑖𝑠𝑠 −𝑚𝑝 < 50 MeV/𝑐2

 background (normalized to signal at 
18 < Δ𝑡 < 25 ns)

𝑀𝑚𝑖𝑠𝑠 −𝑚𝑝 > 120 MeV/𝑐2

 background fraction

Example (blue beam, 2 < 𝐸𝑘𝑖𝑛 < 3 MeV)

o Background in yellow abort gap 
(should be clean blue signal)

o Signal in blue abort gap (should 
be only background from yellow 
beam) 

The normalization is same as above 
→ only for comparison of shape and 
source of background

normalization

well described by normalization at 18 < Δ𝑡 < 25 ns



Background Sources 14

Example (blue beam, 3 < 𝐸𝑘𝑖𝑛 < 4 MeV) From 𝑝 + 𝐴𝑢 operation

Typical bunch shape of Au-beam seen in 
full background, dominates early
background

Late background mainly from signal beam

Using signal cuts in blue abort gap:

𝑀𝑚𝑖𝑠𝑠 −𝑚𝑝 < 50 MeV/𝑐2

Fill-by-fill background fraction 
depends on conditions of both 
beams → important for beam 
polarization measurement

still excellent agreement
Background fraction 𝑟 = 𝑁𝑏𝑔/𝑁



Asymmetry Examples 15

From Ԧ𝑝 + 𝐴𝑢 operation

Blue beam (proton on 
jet target)

Clear asymmetry within 
Δ𝑡 = ± 5 ns

Background asymmetry 
consistent with zero



Analyzing Power: 𝐴𝑁( Ԧ𝑝 + 𝑝) 16

Atomic hydrogen target polarization 𝑃 = 96%

Molecular component 𝑅𝐻2 = 3% (by mass)

Global uncertainty from target polarization not included

−𝑡-range can be extended with punch-through protons



Analyzing Power: 𝐴𝑁( Ԧ𝑝 + 𝐴) 17

Atomic hydrogen target polarization 𝑃 = 96%

Molecular component 𝑅𝐻2 = 3% (by mass)

Global uncertainty from target polarization not included

−𝑡-range can be extended with punch-through protons → A. Poblaguev



Longitudinal Bunch Profile: 𝑝 + 𝑝 18

 Full run 15 statistics: 𝒑 + 𝒑

 1 < 𝑇𝑅 < 7 MeV

 Comparison of inclusive 
and clean bunches

 Beam intensity: normalized 
number of events

 First measurement of 
longitudinal bunch profile

 No significant longitudinal 
polarization profile has 
been found.



Longitudinal Bunch Profile: 𝑝 + 𝐴𝑢 19

 Full run 15 statistics: 𝒑 + 𝑨𝒖

 1 < 𝑇𝑅 < 7 MeV

 Comparison of inclusive and 
clean bunches

 Beam intensity: normalized 
number of events

 No significant effect from 
colliding bunches can be 
seen.



Final Beam Polarizations 20

Atomic hydrogen target polarization 96%
𝐻2 content 3% (mass)

Ratio of target/beam asymmetries
1 < 𝐸𝑟𝑒𝑐𝑜𝑖𝑙 < 7 MeV (six bins)

Fit to constant

use fixed 𝐴𝑁 for 𝑝 + 𝑝 use fill by fill ratio for 𝑝 + 𝐴



Luminosity Weighted Polarization 21

𝑃 =
∫ 𝑃 𝑥, 𝑦, 𝑡 ⋅ 𝐼 𝑥, 𝑦, 𝑡 𝑑𝑥𝑑𝑦𝑑𝑡

∫ 𝐼 𝑥, 𝑦, 𝑡 𝑑𝑥𝑑𝑦𝑑𝑡

Experiments

HJET Polarimeter

Carbon Polarimeter

𝑃 =
∫ 𝑃 𝑥, 𝑦, 𝑡 ⋅ 𝐼𝐵 𝑥, 𝑦, 𝑡 ⋅ 𝐼𝑌 𝑥, 𝑦, 𝑡 𝑑𝑥𝑑𝑦𝑑𝑡

∫ 𝐼𝐵 𝑥, 𝑦, 𝑡 ⋅ 𝐼𝑌 𝑥, 𝑦, 𝑡 𝑑𝑥𝑑𝑦𝑑𝑡

sweep

beam width

𝑃 = 𝑃𝑚𝑎𝑥 ⋅
𝐼

𝐼𝑚𝑎𝑥

𝑅



Polarization Decay & Profile 22

Example fill 18894



o Polarimetry at RHIC

• Essential input for experiments

• Fast feedback during collider operation

Fast polarization measurement with Carbon targets

• Polarization decay and transverse profile

Absolute normalization with polarized hydrogen jet target

o Analyzing power with new detectors in 2015 → improved 
precision and systematic studies

o New asymmetries from elastic proton-heavy-ion scattering

o Longitudinal polarization profile

o Final beam polarizations are fully background corrected

Summary 23





𝜑 𝑠, 𝑡 = 𝜆𝐶𝜆𝐷 𝜑 𝜆𝐴𝜆𝐵
Phys. Rev. D 79, 094014 (2009)
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𝑒𝑚∗ 𝑠, 𝑡 𝜑+
ℎ𝑎𝑑 𝑠, 𝑡 + 𝜑5

ℎ𝑎𝑑∗ 𝑠, 𝑡 𝜑+
𝑒𝑚(𝑠, 𝑡)

no-flip amplitude: 𝜑+ 𝑠, 𝑡 =
1

2
𝜑1 𝑠, 𝑡 +𝜑3 𝑠, 𝑡

First data from 2004 
(100 GeV beam)

Elastic Proton-Proton Scattering 25

Transverse single-spin asymmetries are driven by an interference of amplitudes 
and can be compared to Regge theory.



26o Reconstruction

o Energy calibration

o Time of flight adjustment

o Geometry alignment

o Pedestal noise QA

o Signal selection

o Remove punch through hits

o Missing mass 𝑀𝑚𝑖𝑠𝑠 −𝑀𝑝 < 50 MeV/𝑐2

o Time of flight Δ𝑡 < 5 ns

o Asymmetry calculation

o Inclusive and signal bunches

o Background asymmetry correction

o Beam polarization calculation

o Asymmetry ratio 1 < 𝐸𝑟𝑒𝑐𝑜𝑖𝑙 < 7MeV

𝜖𝑆 =
𝜖𝐼 − 𝑟𝜖𝐵
1 − 𝑟

𝑟 =
𝐵

𝑆 + 𝐵



Energy Calibration 27

Calibrations are done every few days:

o Gain

o Entrance window (dead layer)

Two different α-sources

𝐸𝛼 𝐺𝑑 = 3.183 MeV

𝐸𝛼 𝐴𝑚 = 5.486 MeV

Resolution of peak finding is within 1 
ADC count

Stopping power for protons and
𝛼-particles from NIST database:

∆𝐸𝛼(𝐴𝑚) = 0.72 ∙ ∆𝐸𝛼 𝐺𝑑

∆𝐸𝑃 = 0.44 ∙ ∆𝐸𝛼(𝐺𝑑) ∙ 𝐸[𝑀𝑒𝑉]
−0.64

example



Kinematics 28

❷ ❻ ❽ ⓬

12 strips per detector

Removed peak in prompt hits at low ADC/TDC 
region

Using elastic p-recoil signature for time-of-flight 
offset determination

o Slow drift with time (detector/read-out)

o Big jumps when changing the DAQ system

example detector

Si-strips:
red – central to 
blue – downstream 



Stopped Recoil Protons 29

Slope of rise in waveform can be used to identify 
punch-through particles

Normalized waveform rise (4.5 < 𝐸 < 5.5 MeV)
in each detector

Independent of DAQ system (CAMAC/VME)

Remove punch-through particles:

𝑇𝑘𝑖𝑛 (MeV)

𝛿 𝐴
𝐷
𝐶
(a
.u
.)

example detector

(δADC < −0.5) ∧ (𝛿𝐴𝐷𝐶 < 8.5 − 1.5 ∗ 𝑇𝑘𝑖𝑛)

Normalized to 𝐴𝐷𝐶max

Slope 𝛿𝐴𝐷𝐶 calculated in six 𝑇𝐷𝐶 bins
around ½ 𝐴𝐷𝐶max



Ԧ𝑝
+
𝑝

, y
el

lo
w

 b
ea

m



Ԧ𝑝
+
𝑝

, b
lu

e 
b

ea
m



Ԧ𝑝
+
𝐴
𝑢

, y
el

lo
w

 b
ea

m



Ԧ𝑝
+
𝐴
𝑢

, b
lu

e 
b

ea
m



Ԧ𝑝
+
𝐴
𝑙,

 y
el

lo
w

 b
ea

m



Ԧ𝑝
+
𝐴
𝑙,

 b
lu

e 
b

ea
m



Background Normalization (18 < Δ𝑡 < 25 ns)



Background Fraction ( Δ𝑡 < 5 ns)



Beam Polarizations 38

Online results from 2015, no background correction included

p+Au operation p+Al operation



𝐴𝑁 in Elastic Ԧ𝑝 + 𝑝 Scattering 39

Noise threshold cut: 0.20 for 𝑝 + 𝑝, 0.15 for 𝑝 + 𝐴

p+A may still have some issues with high background fractions and changing beam conditions



40Summary p+Al
Beam polarizations

Full run 15 statistics, p+Al

Comparison of inclusive and 
clean bunches



41Pedestal Noise
fill 18677

channel 64
(with CAMAC)

fill 19214
channel 81
(with VME)

𝑃𝑗𝑒𝑡
↑

𝑃𝑗𝑒𝑡
↓

solid/dashed: 𝑃𝑏𝑒𝑎𝑚
↑ /𝑃𝑏𝑒𝑎𝑚

↓

The noise is mainly on one side of 
the detector (outside).

It changes the waveform quality 
(slope) for low energies and leads 
to asymmetric loss of events.

𝑟𝑚𝑠𝑝𝑒𝑑
↑ − 𝑟𝑚𝑠𝑝𝑒𝑑

↓

(*) can use a fit for VME data, but 
resolution of CAMAC is too small



Polarization Decay & Profile 42


