
sPHENIX C++ coding guidelines, version 1.0

Chris Pinkenburg

August 20, 2018

Contents

1 Introduction 2

2 Naming 3
2.1 Naming of files . 3
2.2 Meaningful names . 4

2.2.1 Required naming conventions 5
2.2.2 Recommended naming conventions 5

2.3 Recommended naming conventions 6

3 Coding 7
3.1 Organizing the code . 8
3.2 Control flow . 12
3.3 Object life cycle . 14

3.3.1 Initialization of variables and constants 15
3.3.2 Constructor initializer lists 19
3.3.3 Copying of objects . 21

3.4 Conversions . 25
3.5 The class interface . 28

3.5.1 Inline functions . 28
3.5.2 Argument passing and return values 28
3.5.3 const correctness . 32
3.5.4 Overloading and default arguments 34

3.6 new and delete . 34
3.7 Singletons . 35
3.8 Static and global objects . 36

1

3.9 Object-oriented programming 37
3.10 Notes on the use of library functions. 40
3.11 Thread friendliness and thread safety 40
3.12 Assertions and error conditions 46
3.13 Error handling . 47
3.14 Parts of C++ to avoid . 50
3.15 Readability and maintainability 55
3.16 Portability . 58
3.17 Using ROOT . 61

4 Style 62
4.1 General aspects of style . 62
4.2 Comments . 65

5 REFERENCES 67

6 Changes 68

1 Introduction

This note gives a set of guidelines and recommendations for coding in C++
for the sPHENIX experiment. They are based on the ATLAS guidelines v
0.6 and will evolve from there. There are several reasons for maintaining
and following a set of programming guidelines. First, by following some
rules, one can avoid some common errors and pitfalls in C++ programming,
and thus have more reliable code. But even more important: a computer
program should not only tell the machine what to do, but it should also tell
other people what you want the machine to do. This is obviously important
any time when you have many people working on a given piece of software,
and such considerations would naturally lead to code that is easy to read and
understand. Think of writing sPHENIX code as another form of publication,
and take the same care as you would writing up an analysis for colleagues.
A lot of these rules are based on the experience gained with PHENIX over
the past two decades.

This note is not intended to be a fixed set of rigid rules. Rather, it should
evolve as experience warrants.

2

2 Naming

This section contains guidelines on how to name objects in a program. Often
you will be confronted with code written by others, adhering to some naming
convention will make it a lot easier to read and understand that code.

2.1 Naming of files

• Each class should have one header file, ending with .h, and
one implementation file, ending with .cc. [source-naming]
From the GNU make manual:

Compiling C++ programs
n.o is made automatically from n.cc, n.cpp, or n.C with a recipe of the
form ‘$(CXX) $(CPPFLAGS) $(CXXFLAGS) -c‘. We encourage you
to use the suffix ’.cc’ for C++ source files instead of ’.C’.

The auto tools we use are sensitive to the file extension when picking the
compiler/linker to use. There have been cases where they got confused
when using ’.C’ for C++ sources and they chose the C linker which
didn’t work to well.

Some exceptions: Small classes used as helpers for another class should
generally not go in their own file, but should instead be placed with
the larger class. Sometimes several very closely related classes may be
grouped together in a single file; in that case, the files should be named
after whichever is the “primary” class. A number of related small helper
classes (not associated with a particular larger class) may be grouped
together in a single file, which should be given a descriptive name. An
example of the latter could be a set of classes used as exceptions for a
package.

For classes in a namespace, the namespace should not be included in
the file name. For example, the header for Trk::Track should be called
Track.h.

Implementation (.cc) files that would be empty may be omitted.

The use of the “.h” suffix for headers is long-standing practice; how-
ever, it is unfortunate since language-sensitive editors will then default

3

to using “C” rather than “C++” mode for these files. For emacs, put
a line like this at the start of the file to indicate it is a “C++” source:

// This file is really -*- C++ -*-.

2.2 Meaningful names

• Choose names based on pronounceable English words, com-
mon abbreviations, or acronyms widely used in the experi-
ment, except for loop iteration variables. [meaningful-names]

For example, nameLength is better than nLn.

Use names that are English and self-descriptive. Abbreviations and/or
acronyms used should be of common use within the community.

• Do not create very similar names. [no-similar-names]

In particular, avoid names that differ only in case or look very similar
in an editor. For example,
track / Track; c1 / cl; XO / X0.

• Use prefix m_ for private/protected data members of classes.
[data-member-naming]
Use a lowercase letter after the prefix m_.

• Do not start any other names with m_. [m-prefix-reserved]

• Do not start names with an underscore. Do not use names
that contain anywhere a double underscore. [system-reservednames]

Such names are reserved for the use of the compiler and system libraries.

The precise rule is that names that contain a double underscore or
which start with an underscore followed by an uppercase letter are
reserved anywhere, and all other names starting with an underscore
are reserved in the global namespace. However, it’s good practice to
just avoid all names starting with an underscore.

4

• Do not end names with an underscore. [no-end-underscore]
It makes code unreadable:

int underscore_=0;

underscore_+=underscore_++;

2.2.1 Required naming conventions

Please try to always follow these rules when writing new packages.

2.2.2 Recommended naming conventions

If there is no already-established naming convention for the package you are
working on, the following guidelines are recommended as being generally
consistent with sPHENIX usage.

• Use prefix k for const variable. [const-variables]

• Use prefix s_ for private/protected static data members of
classes. [static-members]
Use a lowercase letter after the prefix s_.

• The choice of namespace names should be agreed to by the
communities concerned. [namespace-naming]
Don’t proliferate namespaces. If the community developing the code
has a namespace defined already, use it rather than defining a new one.

• Use namespaces to avoid name conflicts between classes. [use-
namespaces]
A name clash occurs when a name is defined in more than one place.
For example, two different class libraries could give two different classes
the same name. If you try to use many class libraries at the same time,
there is a fair chance that you will be unable to compile and link the
program because of name clashes. To solve the problem you can use a
namespace.

• Start class and enum types with an uppercase letter. [class-
naming]

5

class Track;

enum State { green, yellow, red };

• Typedef names should start with an uppercase letter if they
are public and treated as classes. [typedef-naming]

typedef vector<MCParticleKinematics*> TrackVector;

• Alternatively, a typedef name may start with a lower-case
letter and end with typedef. [typedef-naming-2]
This form should be reserved for type names which are not treated
as classes (e.g., a name for a fundamental type) or names which are
private to a class. The widely used _t is actually reserved [4], please
do not use it.

typedef unsigned int mycounter_typedef;

2.3 Recommended naming conventions

• Start names of variables, members, and functions with a low-
ercase letter. [variable-and-function-naming]

double energy;

void extrapolate();

Names starting with s_ and m_ should have a lowercase letter following
the underscore. Exceptions may be made for the case where the name is
following standard physics or mathematical notation that would require
an uppercase letter; for example, uppercase E for energy.

• In names that consist of more than one word, write the words
together, and start each word that follows the first one with
an uppercase letter. [compound-names]

6

class OuterTrackerDigit;

double depositedEnergy;

void findTrack();

• All package names in the release must be unique, independent
of the package’s location in the hierarchy. [unique-packagenames]
If there is an existing package, say ”hcal/cluster”, already existing, an-
other package may not have the name ”emcal/cluster” because ”clus-
ter” has already been used. Include files are installed in subdirectories
named like the package, so those package names have to be unique in-
dependent of path. Just to make this explicit: The name of the package
should be the name of the folder.

• The folder name should be the package name. [folder-packagenames]
Just to make this explicit: The name of the package should be the name
of the sub folder it is located in.

• Underscores should be avoided in package names. [no-underscores-
in-package-names]
It just makes things easier (like the #define in the multiple inclusion
protection if we ever have to parse this with shell scripts)

• package names should be lower case. [lower-case-package-names]
Upper cases cause problems in our build system (package names in
autoconf are not case sensitive)

• Acronyms should be written as all uppercase. [uppercase-acronyms]
METReconstruction, not MetReconstruction
MuonCSCValidation, not MuonCscValidation

3 Coding

This section contains a set of items regarding the “content” of the code.
Organization of the code, control flow, object life cycle, conversions, object
oriented programming, error handling, parts of C++ to avoid, portability,
are all examples of issues that are covered here. The purpose of the fol-
lowing items is to highlight some useful ways to exploit the features of the

7

programming language, and to identify some common or potential errors to
avoid.

3.1 Organizing the code

• Header files must begin and end with multiple-inclusion pro-
tection. [header-guards]

#ifndef PACKAGE_CLASS_H

#define PACKAGE_CLASS_H

// The text of the header goes in here ...

#endif // PACKAGE_CLASS_H

Header files are often included many times in a program. Because C++
does not allow multiple definitions of a class, it is necessary to prevent
the compiler from reading the definitions more than once.

The include guard should include both the package name and class
name, to ensure that is unique.

Don’t start the include guard name with an underscore!

In some rare cases, a file may be intended to be included multiple times,
and thus not have an include guard. Such files should be explicitly
commented as such, and should usually have an extension other than
“.h”.

• Use forward declaration instead of including a header file, if
this is sufficient [forward-declarations]

class Line;

class Point

{

public:

// Distance from a line

Number distance(const Line& line) const;

};

8

Here it is sufficient for the compiler to say that Line is a class, it does
not have to know any details which are inside its header. This saves
time in compilation and avoids an apparent dependency upon the Line
header file. Be careful, however: this does not work if Line is actually
a typedef (like the G4RotationMatrix which is a typedef from CLHEP
at the time of this writing)

• Each header file must contain the declaration for one class
only, except for embedded or very tightly coupled classes or
collections of small helper classes. [one-class-per-source]
This makes your source code files easier to read. This also improves the
version control of the files; for example the file containing a stable class
declaration can be committed and not changed any more. Some excep-
tions: Small classes used as helpers for another class should generally
not go in their own file, but should instead be placed with the larger
class. Sometimes several very closely related classes may be grouped
together in a single file; in that case, the files should be named after
whichever is the “primary” class. A number of related small helper
classes (not associated with a particular larger class) may be grouped
together in a single file, which should be given a descriptive name. An
example of the latter could be a set of classes used as exceptions for a
package.

• Implementation files must hold the member function defini-
tions for the class(es) declared in the corresponding header
file. [implementation-file]

This is for the same reason as for the previous item.

• use #include " " for local includes and list them first and
#include < > for all others [local-includes]
By default, the preprocessor looks for header files included by the quote
form of the directive #include "file" first relative to the directory of
the current file and then in the standard paths given by the -I directive.
This is an important distinction needed to build modified packages lo-
cally, getting this wrong may lead to the inclusion of the wrong include
file from the unmodified package which is almost impossible to debug.

• Ordering of #include statements. [include-ordering]

9

#include directives should generally be listed according to dependency
ordering, with the files that have the most dependencies coming first.
This implies that the first #include in a “.cc” file should be the corre-
sponding “.h” file, followed by other #include directives from the same
package. These would then be followed by #include directives for other
packages, again ordered from most to least dependent. Finally, system
#include directives should come last.

// Example for PHG4InnerHcalDetector.cc

// First the corresponding header.

#include "PHG4InnerHcalDetector.h"

// Then other headers from same source directory

#include "PHG4HcalDefs.h"

// The headers from other sPHENIX packages

// separated by packages

#include <phparameter/PHParameters.h>

#include <g4main/PHG4Utils.h>

// in alphabetical order in package

#include <phool/getClass.h>

#include <phool/PHCompositeNode.h>

#include <phool/PHIODataNode.h>

// Headers from external packages.

// First ROOT (if any)

#include <TSystem.h>

// Then Geant4

#include <Geant4/G4AssemblyVolume.hh>

#include <Geant4/G4Box.hh>

#include <Geant4/G4Colour.hh>

// CGAL and other basic packages

#include <CGAL/Boolean_set_operations_2.h>

#include <CGAL/Circular_kernel_intersections.h>

// Last not least System headers.

#include <cmath>

10

#include <sstream>

Ordering the #include directives in this way gives the best chance of
catching problems where headers fail to include other headers that they
depend on. Ordering them alphabetically helps avoiding duplication of
includes. Some old guides (e.g. ROOT) recommended testing on the
C++ header guard around the #include directive. This advice is now
obsolete and should be avoided.

// Obsolete --- do not do this even if root promotes it.

#ifndef MYPACKAGE_MYHEADER_H

#include "MyHeader.h"

#endif

The rationale for this was to avoid having the preprocessor do redun-
dant reads of the header file. However, current C++ compilers do this
optimization on their own, so this serves only to clutter the source.

• Do not use “using” directives or declarations in headers or
prior to an #include. [no-using-in-headers]
A using directive or declaration imports names from one namespace
into another, often the global namespace.

This does, however, lead to pollution of the global namespace. This can
be manageable if it’s for a single source file; however, if the directive is
in a header file, it can affect many different source files. In most cases,
the author of these sources won’t be expecting this.

Having using in a header can also hide errors. For example:

// In first header A.h:

using namespace std;

// In second header B.h:

#include "A.h"

// In source file B.cc

#include "B.h"

...

vector<int> x; // Missing std!

11

Here, a reference to std::vector in B.cc is mistakenly written without the
std:: qualifier. However, it works anyway because of the using directive
in A.h. But imagine that later B.h is revised so that it no longer uses
anything from A.h, so the #include of A.h is removed. Suddenly, the
reference to vector in B.cc no longer compiles. Now imagine there are
several more layers of #include and potentially hundreds of affected
source files. To try to prevent problems like this, headers should not
use using outside of classes. (Within a class definition, using can
have a different meaning that is not covered by this rule.) For similar
reasons, if you have a using directive or declaration in a “.cc” file, it
should come after all #include directives. Otherwise, the using may
serve to hide problems with missing namespace qualifications in the
headers. Starting with C++11, using can also be used in ways similar
to typedef. Such usage is not covered by this rule.

3.2 Control flow

• Do not change a loop variable inside a for loop block. [do-
notmodify-for-variable]
When you write a for loop, it is highly confusing and error-prone to
change the loop variable within the loop body rather than inside the
expression executed after each iteration. It may also inhibit many of
the loop optimizations that the compiler can perform.

• Prefer range-based for loops. [prefer-range-based-for]
C++11 introduced the ’range-based for’. Prefer using this to a loop
with explicit iterators; that is, prefer:

std::vector<int> v = ...;

for (int x : v)

{

doSomething (x);

}

to

std::vector<int> v = ...;

for (std::vector<int>::const_iterator it = v.begin();

12

it != v.end();

++it)

{

doSomething (*it);

}

In some cases you can’t make this replacement; for example, if you need
to call methods on the iterator itself, or you need to manage multiple
iterators within the loop. But most simple loops over STL ranges are
more simply written with a range-based for.

• All switch statements must have a default clause. [switchde-
fault]
In some cases the default clause can never be reached because there are
case labels for all possible enum values in the switch statement,

but by having such an unreachable default clause you show a potential
reader that you know what you are doing. You also provide for future
changes. If an additional enum value is added, the switch statement
should not just silently ignore the new value. Instead, it should in
some way notify the programmer that the switch statement must be
changed; for example, you could throw an exception

• Each clause of a switch statement must end with break. [switch-
break]

// somewhere specified: enum Colors { GREEN, RED }

// semaphore of type Colors

switch(semaphore) {

case GREEN:

// statement

break;

case RED:

// statement

break;

default:

// unforeseen color; it is a bug

13

// do some action to signal it

}

If you must “fall through” from one switch clause to another (excluding
the trivial case of a clause with no statements), this must be explicitly
stated in a comment. This should, however, be a rare case.

switch (case) {

case 1:

doSomething();

/* FALLTHROUGH */

case 2:

doSomethingMore();

break;

...

}

3.3 Object life cycle

gcc7 will warn about such constructs unless you use a comment like in the
example above. (C++17 will add a fallthrough attribute.)

• Every if-statement must have braces around the conditional
statement. [if-bracing]

This makes code much more readable and reliable, by clearly showing
the flow paths.

The addition of a final else is particularly important in the case where
you have if/else-if. Even single statements should be explicitly blocked
by {}, we had enough cases where people added another line to an if
statement thinking it would be executed as part of the if statement.

if (val == thresholdMin)

{

statement;

}

else if (val == thresholdMax)

{

14

statement;

}

else

{

statement;

// handles all other (unforeseen) cases

}

• Do not use goto. [no-goto]

Use break or continue instead.

This statement remains valid also in the case of nested loops, where
the use of control variables can easily allow to break the loop, without
using goto.

goto statements decrease readability and maintainability and make
testing difficult by increasing the complexity of the code.

Ifgoto statements must be used, it’s better to use them for forward
branching than backwards, and the functions involved should be kept
short.

3.3.1 Initialization of variables and constants

• Declare each variable with the smallest possible scope and
initialize it at the same time. [variable-initialization]

It is best to declare variables close to where they are used. Otherwise
you may have trouble finding out the type of a particular variable. It
is also very important to initialize the variable immediately, so that its
value is well defined.

int value = -1; // initial value clearly defined

int maxValue; // initial value undefined,

// NOT recommended

• Avoid use of “magic literals” in the code. [no-magic-literals]

If some number or string has a particular meaning, it’s best to declare
a symbol for it, rather than using it directly. This is especially true if
the same value must be used consistently in multiple places.

15

Bad example:

class A

{

...

TH1* m_array[10];

};

void A::foo()

{

for (int i = 0; i < 10; i++)

{

ostringstream hname;

hname << "hist_" << i;

m_array[i] = dynamic_cast<TH1*>

(gDirectory()->Get(hname.str().c_str()));

}

}

Better example:

class A

{

...

static const s_numberOfHistograms = 10;

static std::string s_histPrefix;

TH1* m_array[s_numberOfHistograms];

};

s_histPrefix = "hist_";

void A::foo()

{

for (int i = 0; i < s_numberOfHistograms; i++)

{

ostringstream hname;

hname << s_histPrefix << i;

m_array[i] = dynamic_cast<TH1*>

(gDirectory()->Get(hname.str().c_str()));

}

16

}

It is not necessary to turn every literal into a symbol. For example
sometimes reserve() is called on a std::vector before it is filled
with a value that is essentially arbitrary. It probably also doesn’t help
to make this a symbol, but a comment would be helpful. Strings con-
taining text to be written as part of a log message are also best written
literally. In general, though, if you write a literal value other than ’0’,
’1’, true, false, or a string used in a log message, you should consider
defining a symbol for it.

• Declare each type of variable in a separate declaration state-
ment, and do not declare different types (e.g. int and int
pointer) in one declaration statement. [separate-declarations]

Declaring multiple variables on the same line is not recommended. The
code will be difficult to read and understand. Some common mistakes
are also avoided. Remember that when you declare a pointer, a unary
pointer is bound only to the variable that immediately follows.

int i, *ip, ia[100], (*ifp)(); // Not recommended

// recommended way:

LoadModule* oldLm = 0; // pointer to the old object

LoadModule* newLm = 0; // pointer to the new object

Bad example: both ip and jp were intended to be pointers to integers,
but only ip is jp is just an integer!

int* ip, jp;

• Do not use the same variable name in outer and inner scope.
[no-variable-shadowing]

Otherwise the code would be very hard to understand; and it would
certainly be very error prone.

Some compilers will warn about this.

• Be conservative in using auto. [using-auto]

C++11 includes the new auto keyword, which allows one to omit ex-
plicitly writing types that the compiler can deduce. Examples:

17

auto x = 10; // Type int deduced

auto y = 42ul; // Type unsigned long deduced.

auto it = vec.begin(); // Iterator type deduced

Some authorities have recommended using auto pretty much every-
where you can (calling it “auto almost always”). However, our experi-
ence has been that this adversely affects the readability and robustness
of the code. It generally helps a reader to understand what the code
is doing if the type is apparent, but with auto, it often isn’t. Using
auto also makes it more difficult to find places where a particular type
is used when searching the code with tools like lxr. It can also make
it more difficult to track errors back to their source:

const Foo* doSomething();

... a lot of code here ...

auto foo = doSomething();

// What is the type of foo here? You have to look up

// doSomething() in order to find out! Makes it much

// harder to find all places where the type Foo gets used.

// If the return type of doSomething() changes, you’ll get

// an error here, not at the doSomething() call.

foo->doSomethingElse();

The current recommendation is to generally not use auto in place of a
(possibly-qualified) simple type:

// Use these

int x = 42;

const Foo* foo = doSomething();

for (const CaloCell* cell : caloCellContainer) ...

Foo foo (x);

// Rather than these

auto x = 42;

auto foo = doSomething();

for (auto cell : caloCellContainer) ...

auto foo = Foo {x};

18

There are three sorts of places where it generally makes sense to use
auto.

– When the type is already evident in the expression and the decla-
ration would be redundant. This is usually the case for expressions
with new or make_unique.

// auto is fine here.

auto foo = new Foo;

auto ufoo = std::make_unique$<$Foo$>$();

– When you need a declaration for a complicated derived type,
where the type itself isn’t of much interest.

// Fine to use auto here; the full name of the type

// is too cumbersome to be useful.

std::map$<$int, std::string$>$ m = ..;

auto ret = m.insert (std::make_pair (1, "x"));

if (ret.second)

– auto may also be useful in writing generic template code.

In general, the decision as to whether or not to use auto should be
made on the basis of what makes the code easier to read. It is bad
practice to use it simply to save a few characters of typing.

3.3.2 Constructor initializer lists

• Let the order in the initializer list be the same as the order
of the declarations in the header file: first base classes, then
data members. [member-initializer-ordering]

It is legal in C++ to list initializers in any order you wish, but you
should list them in the same order as they will be called. The order in
the initializer list is irrelevant to the execution order of the initializers.
Putting initializers for data members and base classes in any order
other than their actual initialization order is therefore highly confusing
and can lead to errors. Class members are initialized in the order
of their declaration in the class; the order in which they are listed
in a member initialization list makes no difference whatsoever! So if
you hope to understand what is really going on when your objects are

19

being initialized, list the members in the initialization list in the order
in which those members are declared in the class.

Here, in the bad example, m_data is initialized first (as it appears in
the class) before m_size, even though m_size is listed first. Thus, the
m_data initialization will read uninitialized data from m_size.

Bad example:

class Array

{

public:

Array(int lower, int upper);

private:

int* m_data;

unsigned m_size;

int m_lowerBound;

int m_upperBound;

};

Array::Array(int lower, int upper) :

m_size(upper-lower+1),

m_lowerBound(lower),

m_upperBound(upper),

m_data(new int[m_size])

{ ...

Correct example:

class Array

{

public:

Array(int lower, int upper);

private:

unsigned m_size;

int m_lowerBound;

int m_upperBound;

int* m_data;

};

20

Array::Array(int lower, int upper) :

m_size(upper-lower+1),

m_lowerBound(lower),

m_upperBound(upper),

m_data(new int[m_size])

{ ...

Virtual base classes are always initialized first, then base classes, data
members, and finally the constructor body for the derived class is run.

class Derived : public Base // Base is number 1

{

public:

explicit Derived(int i);

// The keyword explicit prevents the constructor

// from being called implicitly.

// int x = 1;

// Derived dNew = x;

// will not work

Derived();

private:

int m_jM; // m_jM is number 2

Base m_bM; // m_bM is number 3

};

Derived::Derived(int i) : Base(i), m_jM(i), m_bM(i)

{

// Recommended order 1 2 3

...

}

3.3.3 Copying of objects

• A function must never return, or in any other way give access
to, references or pointers to local variables outside the scope
in which they are declared. [no-refs-to-locals]

21

Returning a pointer or reference to a local variable is always wrong
because it gives the user a pointer or reference to an object that no
longer exists.

Bad example:

You are using a complex number class, Complex, and you write a
method that looks like this:

Complex&

calculateC1 (const Complex& n1, const Complex& n2)

{

double a = n1.getReal()-2*n2.getReal();

double b = n1.getImaginary()*n2.getImaginary();

// create local object

Complex C1(a,b);

// return reference to local object

// the object is destroyed on exit from this function:

// trouble ahead!

return C1;

}

In fact, most compilers will spot this and issue a warning. This partic-
ular function would be better written to return the result by value:

Complex calculateC1 (const Complex& n1, const Complex& n2)

{

double a = n1.getReal()-2*n2.getReal();

double b = n1.getImaginary()*n2.getImaginary();

return Complex(a,b);

}

• If objects of a class should never be copied, then the copy con-
structor and the copy assignment operator should be deleted.
[copy-protection]

Ideally the question whether the class has a reasonable copy seman-
tic will naturally be a result of the design process. Do not define a
copy method for a class that should not have it. By deleting the copy

22

constructor and copy assignment operator, you can make a class non-
copyable.

// There is only one Fun4AllServer,

// and that should not be copied

class Fun4AllServer

{

public:

Fun4AllServer();

virtual ~Fun4AllServer();

// Delete copy constructor --- disallow copying.

Fun4AllServer(const Fun4AllServer&)

= delete;

// Delete assignment operator --- disallow assignment.

Fun4AllServer&

operator=(const Fun4AllServer&) = delete;

};

This syntax is new in C++11. In C++98, this was achieved by declar-
ing the deleted methods as private (and not implementing them).

• If a class owns memory via a pointer data member, then the
copy constructor, the assignment operator, and the destruc-
tor should all be implemented. [define-copy-and-assignment]

The compiler will generate a copy constructor, an assignment opera-
tor, and a destructor if these member functions have not been declared.
A compiler-generated copy constructor does memberwise initialization
and a compiler-generated copy assignment operator does memberwise
assignment of data members and base classes. For classes that man-
age resources (examples: memory (new), files, sockets) the generated
member functions probably have the wrong behavior and must be im-
plemented by the developer. You have to decide if the resources pointed
to must be copied as well (deep copy), and implement the correct be-
havior in the operators. Of course, the constructor and destructor must
be implemented as well.

Bad Example:

23

class String

{

public:

String(const char *value=0);

~String(); // destructor but no copy constructor

// or assignment operator

private:

char *m_data;

};

String::String(const char *value)

{ // correct behavior implemented in constructor

m_data = new char[strlen(value)]; // fill m_data

}

String::~String()

{ // correct behavior implemented in destructor

delete m_data;

}

...

// declare and construct a ==> m_data points to "Hello"

String a("Hello");

// open new scope

{ // declare and construct b ==> m_data points to "World"

String b("World");

b=a;

// execute default op= as synthesized by compiler ==$>$

// memberwise assignment i.e. for pointers (m_data)

// bitwise copy

// ==> m_data of "a" and "b" now point to the same string

// "Hello"

// ==> 1) memory b used to point to never deleted ==>

// possible memory leak

// 2) when either a or b goes out of scope,

// its destructor will delete the memory

// still pointed to by the other

}

// close scope: b’’s destructor called;

24

// memory still pointed to by a’ deleted!

String c=a;

// but m_data of "a" is undefined!!

• Assignment member functions must work correctly when the
left and right operands are the same object. [self-assign]

This requires some care when writing assignment code, as the case
(when left and right operands are the same) may require that most of
the code is bypassed.

A& A::operator=(const A& a)

{

if (this != &a)

{

// beware of s=s - "this" and "a" are the same object

// ... implementation of operator=

}

}

3.4 Conversions

• Use explicit rather than implicit type conversion. [avoid-implicit-
conversions]

Most conversions are bad in some way. They can make the code less
portable, less robust, and less readable. It is therefore important to
use only explicit conversions. Implicit conversions are almost always
bad. In general, casts should be strongly discouraged, especially the
old style C casts.

• Use the C++ cast operators (dynamic_cast and static_cast)
instead of the C-style casts. [use-c-casts]

The new cast operators give the user a way to distinguish between dif-
ferent types of casts, and to ensure that casts only do what is intended
and nothing else.

The C++ static_cast operator allows explicitly requesting allowed
implicit conversions and between integers and enums. It also allows

25

casting pointers up and down a class hierarchy (as long as there’s no
virtual inheritance), but no checking is done when casting from a less
to a more-derived type.

The C++ dynamic_cast operator is used to perform safe casts down
or across an inheritance hierarchy. One can actually determine whether
the cast succeeded because failed casts are indicated either by a bad_cast
exception or a null pointer. The use of this type of information at run
time is called Run-Time Type Identification (RTTI).

int n = 3;

double r = static_cast<double>(n) * a;

class Base { };

class Derived : Base { };

void f(Derived* d_ptr)

{

// if the following cast is inappropriate

// a null pointer will be returned!

Base* b_ptr = dynamic_cast<Base*>(d_ptr);

// ...

}

• Do not convert const objects to non-const. [no-const-cast]

In general you should never cast away the constness of objects.

If you have to use a const_cast to remove const, either you’re writing
some low-level code that that’s deliberately subverting the C++ type
system, or you have some problem in your design or implementation
that the const_cast is papering over.

Sometimes you’re forced to use a const_cast due to problems with
external libraries. But if the library in question is maintained by
sPHENIX, then try to get it fixed in the original library before re-
sorting to const_cast.

The keyword mutable allows data members of an object that have
been declared const to remain modifiable, thus reducing the need to
cast away constness. The mutable keyword should only be used for
variables which are used for caching information. In other words, the

26

object appears not to have changed but it has stored something to save
time on subsequent use.

• Do not use reinterpret_cast [no-reinterpret-cast]

reinterpret_cast is machine-, compiler- and compile-options-dependent.
It is a way of forcing a compiler to accept a type conversion which is
dependent on implementation. It blows away type-safety, violates en-
capsulation and more importantly, can lead to unpredictable results.

reinterpret_cast has legitimate uses, such as low-level code which
deliberately goes around the C++ type system. Such code should
usually be found only in the core and framework packages. Exception:
reinterpret_cast is required in some cases if one is not using old-style
casts. It is required for example if you wish to convert a callback func-
tion signature (X11, expat, Unix signal handlers are common causes).
Some external libraries (X11 in particular) depend on casting function
pointers. If you absolutely have to work around limitations in external
libraries, you may of course use it.

One particularly nasty case to be aware of and to avoid is pointer alias-
ing. If two pointers have different types, the compiler may assume that
they cannot point at the same object. For example, in this function:

int convertAndBuffer (int* buf, float x)

{

float* fbuf = reinterpret_cast<float*>(buf);

*fbuf = x;

return *buf;

}

the compiler is entitled to rewrite it as

int convertAndBuffer (int* buf, float x)

{

int ret = *buf;

float* fbuf = reinterpret_cast<float*>(buf);

*fbuf = x;

return ret;

}

27

(As a special case, you can safely convert any pointer type to or from
a char*.) The proper way to do such a conversion is with a union.

3.5 The class interface

3.5.1 Inline functions

• Header files must contain no implementation except for small
functions to be inlined. These inlines must appear at the end
of the header after the class definition [inline-functions]
If you have many inline functions, it is usually better to split them out
into a separate file, with extension “.icc”, that is included at the end
of the header.

Inline functions can improve the performance of your program; but they
also can increase the overall size of the program and thus, in some cases,
have the opposite result. It can be hard to know exactly when inlining
is appropriate. As a rule of thumb, inline only very simple functions
to start with (one or two lines). You can use profiling information to
identify other functions that would benefit from inlining.

Use of inlining makes debugging hard and, even worse, can force a com-
plete release rebuild or large scale recompilation if the inline definition
needs to be changed.

3.5.2 Argument passing and return values

• Pass an unmodifiable argument by value only if it is of built-in
type or small; otherwise, pass the argument by const reference
(or by const pointer if it may be null). [large-argument-passing]

An object is considered small if it is a built-in type or if it contains at
most one small object. Built-in types such as char, int, and double can
be passed by value because it is cheap to copy such variables. If an
object is larger than the size of its reference (typically 64 bits), it is not
efficient to pass it by value. Of course, a built-in type can be passed
by reference when appropriate.

void func(char c); // OK

void func(int i); // OK

void func(double d); // OK

28

void func(complex<float> c); // OK

void func(Track t); // not good, since Track is large, so

// there is an overhead in copying t.

Arguments of class type are often costly to copy, so it is preferable
to pass a const reference to such objects; in this way the argument is
not copied. Const access guarantees that the function will not change
the argument. In terms of efficiency, passing by pointer is the same as
passing by reference. However, passing by reference is preferred, unless
it is possible to the object to be missing from the call.

void func(const LongString& s); // const reference

• If an argument may be modified, pass it by non-const refer-
ence and clearly document the intent. [modifiable-arguments]
For example:

// Track @c t is updated by the addition of hit @c h.

void updateTrack(const Hit& h, Track& t);

Again, passing by references is preferred, but a pointer may be used if
the object can be null.

• Use unique_ptr to pass ownership of an object to a function.
[pass-ownership]
To pass ownership of an object into a function, use unique_ptr (by
value):

void foo (std::unique_ptr<Object> obj);

...

auto obj = std::make_unique<Object>();

...

foo (std::move (obj);

In most cases, unique_ptr should be passed by value. There are how-
ever a few possible use cases for passing unique_ptr by reference:

29

– The called function may replace the object passed in with another
one. In this case, however, consider returning the new object as
the value of the function.

– The called function may only conditionally take ownership of the
passed object. This is likely to be confusing and error-prone and
should probably be avoided. Consider if a shared_ptr would be
better in this case.

There is basically no good case for passing unique_ptr as a const refer-
ence. If you need to interoperate with existing code, object ownership
may be passed by pointer. The fact that ownership is transferred should
be clearly documented.

Do not pass ownership using references. Here are a some additional
examples to illustrate this. Assume that class C contains a member
Foo* m owning pointer which the class deletes. (In C++11, it would
of course usually be better for this to be a unique_ptr.)

// --- Best

void C::takesOwnership (std::unique_ptr<Foo> foo)

{

delete m_owning_pointer;

m_owning_pointer = foo.release();

}

// --- Ok if documented.

// Takes ownership of the @c foo pointer.

void C::takesOwnership (Foo* foo)

{

delete m_owning_pointer;

m_owning_pointer = foo;

}

// --- Don’t do this!

void C::takesOwnership (Foo& foo)

{

delete m_owning_pointer;

m_owning_pointer = &foo;

}

30

• Return basic types or new instances of a class type by value.
[return-by-value] Returning a class instance by value is generally
preferred to passing an argument by non-const reference:

// Bad

void getVector (std::vector<int>& v)

{

v.clear();

for (int i=0; i < 10; i++)

{

v.push_back(v);

}

}

// Better

std::vector<int> getVector()

{

std::vector<int> v;

for (int i=0; i < 10; i++)

{

v.push_back(v);

}

return v;

}

The return-value optimization plus move semantics will generally mean
that there won’t be a significant efficiency difference between the two.

• Use unique_ptr to return ownership. [returning-ownership]
If a function is returning a pointer to something that is allocated off
the heap which the caller is responsible for deleting, then return a
unique_ptr.

If compatibility with existing code is an issue, then a plain pointer may
be used, but the caller takes ownership should be clearly documented.

Do not return ownership via a reference.

31

// Best

std::unique_ptr<Foo> makeFoo()

{

return std::make_unique<Foo> (...);

}

// Ok if documented

// makeFoo() returns a newly-allocated Foo; caller must delete it.

Foo* makeFoo()

{

return new Foo (...);

}

// NO!

Foo& makeFoo()

{

Foo* foo = new Foo (...);

return *foo;

}

• Have operator= return a reference to *this. [assignment-
returnvalue] This ensures that

a = b = c;

will assign c to b and then b to a as is the case with built-in objects.

3.5.3 const correctness

• Declare a pointer or reference argument, passed to a function,
as const if the function does not change the object bound to
it. [const-arguments]
An advantage of const-declared parameters is that the compiler will
actually give you an error if you modify such a parameter by mistake,
thus helping you to avoid bugs in the implementation.

// operator<< does not modify the String parameter

ostream& operator<<(ostream& out, const String& s);

32

• The argument to a copy constructor and to an assignment
operator must be a const reference. [copy-ctor-arg]

This ensures that the object being copied is not altered by the copy or
assign.

• In a class method, do not return pointers or non-const refer-
ences to private data members. [no-non-const-refs-returned]

Otherwise you break the principle of encapsulation.

If necessary, you can return a pointer to a const or const reference.

This does not mean that you cannot have methods returning an iterator
if your class acts as a container. An allowed exception to this rule is
the use of the singleton pattern. In that case, be sure to add a clear
explanation in a comment so that other developers will understand
what you are doing.

• Declare as const a member function that does not affect the
state of the object. [const-members]

Declaring a member function as const has two important implications.
First, only const member functions can be called for const objects; and
second, a const member function will not change data members

It is a common mistake to forget to const declare member functions
that should be const.

This rule does not apply to the case where a member function which
does not affect the state of the object overrides a non-const member
function inherited from some super class.

• Do not let const member functions change the state of the
program. [really-const]

A const member function promises not to change any of the data mem-
bers of the object. Usually this is not enough. It should be possible
to call a const member function any number of times without affecting
the state of the complete program. It is therefore important that a
const member function refrains from changing static data members or
other objects to which the object has a pointer or reference.

33

Using function name overloading for any other purpose than to group
closely related member functions is very confusing and is not recom-
mended.

3.5.4 Overloading and default arguments

• Use function overloading only when methods differ in their
argument list, but the task performed is the same.

3.6 new and delete

• Do not use new and delete where automatic allocation will
work. [auto-allocation-not-new-delete]

Suppose you have a function that takes as an argument a pointer to an
object, but the function does not take ownership of the object. Then
suppose you need to create a temporary object to pass to this function.
In this case, it’s better to create an automatically-allocated object on
the stack than it is to use new / delete. The former will be faster, and
you won’t have the chance to make a mistake by omitting the delete.
// Not good:

Foo* foo = new Foo;

doSomethingWithFoo (foo);

delete foo;

// Better:

Foo foo;

doSomethingWithFoo (&foo);

• Match every invocation of new with one invocation of delete
in all possible control flows from new. [match-new-delete]

A missing delete would cause a memory leak.

34

However, in Fun4All, an object which was created and then registered
with any of it’s components (the Server, HistoManager,...) or put on
the Phool Node Tree must not be deleted.

In new code (from C++14 on), you should generally use make_unique

for this.

#include <memory>

...

DataVector<C>* dv = ...;

auto c = std::make_unique<C>("argument");

...

if (test)

{

dv->push_back (std::move (c));

}

auto_ptr was an attempt to do something similar to unique_ptr in
older versions of the language. However, it has some serious deficiencies
and should not be used in new code.

• A function should explicitly document if it takes ownership of
a pointer passed to it as an argument. [explicit-ownership]
The default expectation for a function should be that it does not take
ownership of pointers passed to it as arguments. In that case, the
function must not invoke delete on the pointer, nor pass it to any
other function that takes ownership. However, if the function is clearly
documented as taking ownership of the pointer, then it must either
delete the pointer or pass it to another function which will ensure that
it is eventually deleted.

3.7 Singletons

This rule warrants its own section

• No Singletons in subsystem/user code [no-singletons]

Singletons are evil, initially they make things “easier” but in the long
run they obscure the flow of information and make it hard to figure
out what’s going on (call it the ultimate nightmare in some PHENIX

35

subsystem code). Thread safety is often out the window with those.
There are good reasons to use them in framework type code but they
do not belong into subsystem/user code.

3.8 Static and global objects

Rather than simply documenting that a function takes ownership of a pointer,
it is recommended that you use std::unique_ptr to explicitly show the
transfer of ownership.

void foo (std::unique_ptr<C> ptr);

...

std::unique_ptr<C> p (new C);

...

foo (p);

// The argument of foo() is initialized by move.

// p is left as a null pointer.

• Do not access a pointer or reference to a deleted object [deleted-
objects]

A pointer that has been used as argument to a delete expression should
not be used again unless you have given it a new value, because the
language does not define what should happen if you access a deleted
object. This includes trying to delete an already deleted object. You
should assign the pointer to 0 or a new valid object after the delete is
called; otherwise you get a “dangling” pointer.

• After deleting a pointer, assign it to nullptr. [nullptr-pointer]

C++ guarantees that deletion of nullptr pointers (zero, NULL before
C++11) is safe, so this gives some safety against double deletes.

X* myX = makeAnX();

delete myX;

myX = nullptr;

This is of course not needed if the pointer is about to go out of scope,
or when objects are deleted in a destructor (unless it’s particularly

36

complicated). But this is a good practice if the pointer persists beyond
the block of code containing the delete (especially if it’s a member
variable).

• Do not declare variables in the global namespace. [no-globalvariables]
If necessary, encapsulate those variables in a class or in a namespace.
Global variables violate encapsulation and can cause global scope name
clashes. Global variables make classes that use them context depen-
dent, hard to manage, and difficult to reuse.

For variables that are used only within one “.cc” file, put them in an
anonymous namespace.

namespace

{

// This variable is visible only in the file containing

// this declaration, and is guaranteed not to conflict

// with any declarations from other files.

int counter;

}

• Do not put functions into the global namespace. [no-globalfunctions]
Similarly to variables, functions declarations should be put in a names-
pace. If they are used only within one “.cc” file, then they should be
put in an anonymous namespace.

In a few cases, it might be necessary to declare a function in the global
namespace to have overloading work properly, but this should be an
exception.

3.9 Object-oriented programming

• Do not declare data members to be public. [no-public-datamembers]
This ensures that data members are only accessed from within member
functions. Hiding data makes it easier to change implementation and
provides a uniform interface to the object.

class Point

{

37

public:

Number x() const; // Return the x coordinate

private:

Number m_x; // The x coordinate (safely hidden)

};

The fact that the class Point has a data member m x which holds
the x coordinate is hidden. An exception is objects that are intended
to be more like C-style structures than classes. Such classes should
usually not have any methods, except possibly a constructor to make
initialization easier.

• If a class has at least one virtual method then it must have
a public virtual destructor or (exceptionally) a protected de-
structor. [virtual-destructor]
The destructor of a base class is a member function that in most cases
should be declared virtual. It is necessary to declare it virtual in a base
class if derived class objects are deleted through a base class pointer.
If the destructor is not declared virtual, only the base class destructor
will be called when an object is deleted that way. There is one case
where it is not appropriate to use a virtual destructor: a mix-in class.
Such a class is used to define a small part of an interface, which is
inherited (mixed in) by subclasses. In these cases the destructor, and
hence the possibility of a user deleting a pointer to such a mix-in base
class, should normally not be part of the interface offered by the base
class. It is best in these cases to have a nonvirtual, nonpublic destructor
because that will prevent a user of a pointer to such a base class from
claiming ownership of the object and deciding to simply delete it. In
such cases it is appropriate to make the destructor protected. This will
stop users from accidentally deleting an object through a pointer to the
mix-in base-class, so it is no longer necessary to require the destructor
to be virtual.

• Always re-declare virtual functions as virtual in derived classes.
[redeclare-virtual]

This is just for clarity of code. The compiler will know it is virtual,
but the human reader may not. This, of course, also includes the
destructor, as stated in item [3.8]. Virtual functions in derived classes

38

which override methods from the base class should also be declared
with the override keyword. If the signature of the method is changed
in the base class, so that the declaration in the derived class is no longer
overriding it, this will cause the compiler to flag an error.

class B

{

public:

virtual void foo(int);

};

class D : public B

{

public:

// Declare foo as a virtual method that overrides

// a method from the base class.

virtual void foo(int) override;

};

• Avoid multiple inheritance, except for abstract interfaces. [nomultiple-
inheritance]
Multiple inheritance is seldom necessary, and it is rather complex and
error prone. The only valid exception is for inheriting interfaces or
when the inherited behavior is completely decoupled from the class’s
responsibility.

• Avoid the use of friend declarations. [no-friend]
Friend declarations are almost always symptoms of bad design and they
break encapsulation. When you can avoid them, you should. Possible
exceptions are the streaming operators and binary operators on classes.
Other possible exceptions include very tightly coupled classes and unit
tests.

• Avoid the use of protected data members. [no-protected-data]
Protected data members are similar to friend declarations in that they
allow a controlled violation of encapsulation. However, it is even less
well-controlled in the case of protected data, since any class may derive
from the base class and access the protected data. The use of protected
data results in one class depending on the internals of another, which

39

is a maintenance issue should the base class need to change. Like
friend declarations, the use of protected member data should be avoided
except for very closely coupled classes (that should generally be part
of the same package). Rather, you should define a proper interface for
what needs to be done (parts of which may be protected).

3.10 Notes on the use of library functions.

• Use std::abs to calculate an absolute value. [std-abs]
The return type of std::abs will conform to the argument type; other
variants of abs may not do this.

In particular, beware of this:

#include <cstdlib>

float foo (float x)

{

return abs(x);

}

which will truncate x to an integer. (Clang will warn about this.)

Conversely, in this example:

#include <cmath>

float int (int x)

{

return fabs(x);

}

the argument will first be converted to a float, then the result converted
back to an integer.

Using std::abs uniformly should do the right thing in almost all cases
and avoid such surprises.

3.11 Thread friendliness and thread safety

sPHENIX so far does not use multi threading but this might change at some
point. Basically our code should be “thread-friendly”. The framework will

40

ensure that no more than one thread is executing a given Algorithm instance
at one time, the code must ensure that it doesn’t interfere with other threads.
Some guidelines for this are outlined below; but in brief:

• don’t use singletons,

• don’t use static data,

• don’t use mutable

• don’t cast away const

Following these rules will keep you out of most potential trouble.
Code that manages data (e.g. access to calibrations) may need to be fully

“thread-safe”; that is, allow for multiple threads to operate simultaneously
on the same object. The easiest way to ensure this is for the object to have
no mutable internal state, and only const methods. If, however, some threads
may be modifying the state of the object, then some sort of locking or other
means of synchronization will likely be required. A full discussion of this is
beyond the scope of these guidelines. To run successfully in a multithreaded
environment, algorithmic code must also respect the rules imposed by the
framework on event and conditions data access. This is also beyond the
scope of these guidelines.

• Follow C++ thread-safety conventions for data objects. [mtfollow-
c-conventions]
The standard C++ container objects follow the rule that methods de-
clared as const are safe to call simultaneously from multiple threads,
while no non-const method can be called simultaneously with any other
method (const or non-const) on the same object. Classes meant to be
data objects should generally follow the same rules, unless there is a
good reason to the contrary. This will generally happen automatically
if the rules outlined below are followed: briefly, don’t use static data,
don’t use mutable, and don’t cast away const. Sometimes it may be
useful to have data classes for which non-const methods may be called
safely from multiple threads. If so, this should be indicated in the doc-
umentation of the class, and perhaps hinted from its name (maybe like
ConcurrentFoo).

41

• Do not use non-const static variables. [mt-no-nonconst-static]
Do not use non-const static variables in thread-friendly code, either
global or local.

int a;

int foo()

{

if (a > 0) // Bad use of global static.

{

static int count = 0;

return ++count; // Bad use of local static.

}

return 0;

}

struct Bar

{

static int s_x;

int x() { return s_x; } // Bad use of static class member.

};

A const static is, however, perfectly fine:

static const std::string s = "a string"; // ok, const

It’s generally ok to have static mutex or thread-local variables:

static std::mutex m; // Ok. It’s a mutex,

// so it’s meant to be accessed

// from multiple threads.

static thread_local int a; // Ok, it’s thread-local.

(Be aware, though, that thread-local variables can be quite slow.) A
static std::atomic<T> variable may be ok, but only if it doesn’t
need to be updated consistently with other variables.

42

• Do not cast away const [mt-no-const-cast]
This rule was already mentioned above. However, it deserves particular
emphasis in the context of thread safety. The usual convention for C++
is that a const method is safe to call simultaneously from multiple
threads, while if you call a non-const method, no other threads can
be simultaneously accessing the same object. If you cast away const,
you are subverting these guarantees. Any use of const_cast needs to
be analyzed for its effects on thread-safety and possibly protected with
locking.

For example, consider this function:

void foo (const std::vector<int>& v)

{

...

// Sneak this in.

const_cast<std::vector<int>&>(v).push_back(10);

}

Someone looking at the signature of this function would see that it
takes only a const argument, and therefore conclude that that it is
safe to call this simultaneously with other code that is also reading the
same vector instance. But it is not, and the const_cast is what causes
that reasoning to fail.

• Avoid mutable members [mt-no-mutable]
The use of mutable members has many of the same problems as const_cast
(as indeed, mutable is really just a restricted version of const_cast).
A mutable member can generally not be changed from a non-const

method without some sort of explicit locking or other synchronization.
It is best avoided in code that should be used with threading. mutable
can, however, be used with objects that are explicitly intended to be ac-
cessed from multiple threads. These include mutexes and thread-local
pointers. In some cases, members of atomic type may also be safely
made mutable, but only if they do not need to be updated consistently
with other members.

• Do not return non-const member pointers/references from
const methods [mt-const-consistency]

43

Consider the following fragment:

class C

{

public:

Impl* impl() const { return m_impl; }

private:

Impl* m_impl;

};

This is perfectly valid according to the C++ const rules. However, it
allows modifying the Impl object following a call to the const method
impl(). Whether this is actually a problem depends on the context.
If m_impl is pointing at some unrelated object, then this might be
ok; however, if it is pointing at something which should be considered
part of C, then this could be a way around the const guarantees. To
maintain safety, and to make the code easier to reason about, do not
return a non-const pointer (or reference) member from a const member
function.

• Be careful returning const references to class members. [mtconst-
references]
Consider the following example:

class C

{

public:

const std::vector<int>& v() const { return m_v; }

void append (int x) { m_v.push_back (x); }

private:

std::vector<int> m_v;

};

int getSize (const C& c)

{

return c.v().size();

}

44

int push (C& c)

{

c.append (1);

}

This is a fairly typical example of a class that has a large object as a
member, with an accessor the returns the member by const reference
to avoid having to do a copy.

But suppose now that one thread calls getSize() while another thread
calls push() at the same time on the same object. It can happen that
first getSize() gets the reference and starts the call to size(). At that
point, the push_back() can run in the other thread. If push_back()
runs at the same time as size(), then the results are unpredictable
the size() call could very well return garbage.

Note that it doesn’t help to add locking within the class C:

class C

{

public:

const std::vector<int>& v() const

{

std::lock_guard<std::mutex> lock (m_mutex);

return m_v;

}

void append (int x)

{

std::lock_guard<std::mutex> lock (m_mutex);

m_v.push_back (x);

}

private:

mutable std::mutex m_mutex;

std::vector<int> m_v;

};

This is because the lock is released once v() returns and at that point,
the caller can call (const) methods on the vector instance unprotected
by the lock. Here are a few ways in which this could possibly be solved.

45

Which is preferable would depend on the full context in which the class
is used.

– Change the v() accessor to return the member by value instead
of by reference.

– Remove the v() accessor and instead add the needed operations
to the C class, with appropriate locking. For the above example,
we could add something like:

size_t C::vSize() const

{

std::lock_guard<std::mutex> lock (m_mutex);

return m_v.size();

}

– Change the type of the m_v member to something that is inher-
ently thread-safe. This could mean replacing it with a wrapper
around std::vector that does locking internally, or using some-
thing like concurrent_vector from TBB.

– Do locking externally to class C. For example, introduce a mutex
that must be acquired in both getSize() and push() in the above
example.

3.12 Assertions and error conditions

You should validate your input and output data whenever an invalid input
can cause an invalid output.

• Don’t use assertions in place of exceptions. [assertion-usage]
Assertions should only be used to check for conditions which should be
logically impossible to occur. Do not use them to check for validity of
input data. For such cases, you should raise an exception (or return an
error code) instead.

Assertions may be removed from production code (assert is a macro,
if compiled with NDEBUG, assert generates no code), so they should
not be used for any checks which must always be done.

• Pre-conditions and post-conditions should be checked for va-
lidity. [pre-post-conditions]

46

3.13 Error handling

• Check for all errors reported from functions. [check-returnstatus]
It is important to always check error conditions, regardless of how they
are reported.

• Use exceptions to report fatal errors. [exceptions]
Exceptions in C++ are a means of separating error reporting from error
handling. They should be used for reporting errors that the calling code
should not be expected to handle. An exception is “thrown” to an error
handler, so the treatment becomes non-local.

If you need to report an error that should stop event processing, you
should raise an exception. If your code is throwing exceptions, it is
helpful to define a separate class for each exception that you throw.
That way, it is easy to stop in the debugger when a particular exception
is thrown by putting a breakpoint in the constructor for that class.

#include <stdexcept>

class ExcMyException

: public std::runtime_error

{

public:

// Constructor can take arguments to pass through

// additional information.

ExcMyException (const std::string& what)

: std::runtime_error ("My exception: " : what)

{}

};

...

throw MyException ("You screwed up.");

• Do not throw exceptions as a way of reporting uncommon
values from a function. [exception-usage]
If an error can be handled locally, then it should be. Exceptions should
not be used to signal events which can be expected to occur in a regular
program execution. It is up to programmers to decide what it means
to be exceptional in each context.

47

Take for example the case of a function find(). It is quite common
that the object looked for is not found, and it is certainly not a failure;
it is therefore not reasonable in this case to throw an exception. It is
clearer if you return a well-defined value.

• Do not use exception specifications. [no-exception-specifications]
Exception specifications were a way to declare that a function could
throw one of only a restricted set of exceptions. Or rather, that’s
what most people wanted it to do; what it actually did was require the
compiler to check, at runtime, that a function did not throw any but
a restricted set of exceptions. Experience has shown that exception
specifications are generally not useful, and they have been deprecated
in C++11. They should not be used. In C++17, the use of non-
empty exception specifications is an error. C++14 adds a new noexcept
keyword. However, the motivation for this was really to address a
specific problem with move constructors and exception-safety, and it is
not clear that it is generally useful. For now, it is not recommended
to use noexcept, unless you have a specific situation where you know
it would help. For a nice summary about problems with exception
specifications read [2].

• Do not use noexcept specifications. [no-noexcept-specifications]
It’s counter productive. See [3] for an explanation.

• Do not catch a broad range of exceptions outside of framework
code. [no-broad-exception-catch]
The C++ exception mechanism allows catching a thrown exception,
giving the program the chance to continue execution from the point
where the exception was caught. This can be used some specific cases
where you know that some specific exception isn’t really a problem.
However, you should catch only the particular exception involved here.
If you use an overly-broad catch specification, you risk hiding other
problems. Example:

try {

return getObject ("foo");

// getObject may throw ExcNotFound if the "foo"

// object is not found. In that case we can just

// return 0.

48

}

catch (ExcNotFound&)

{

return 0;

}

// But one would not want to do this, since that would

// hide other errors:

catch (...)

{

return 0;

}

• Prefer to catch exceptions as const reference, rather than as
value. [catch-const-reference]
Classes used for exceptions can be polymorphic just like data classes,
and this is in fact the case for the standard C++ exceptions. However,
if you catch an exception and name the base class by value, then the
object thrown is copied to an instance of the base class.

For example, consider this program:

#include <stdexcept>

#include <iostream>

class myex : public std::exception

{

public:

virtual const char* what() const noexcept

{ return "Mine!"; }

};

void foo()

{

throw myex();

}

int main()

{

try

49

{

foo();

}

catch (std::exception ex)

{

std::cout << "Exception: " << ex.what() << "\n";

}

return 0;

}

It looks like the intention here is to have a custom message printed when
the exception is caught. But that’s not what happens this program
actually prints:

Exception: std::exception

That’s because in the catch clause, the myex instance is copied to a
std::exception instance, so any information about the derived myex
class is lost. If we change the catch to use a reference instead:

catch (const std::exception ex&)

{

then the program prints what was probably intended.

Exception: Mine!

3.14 Parts of C++ to avoid

Here a set of different items are collected. They highlight parts of the lan-
guage which should be avoided, because there are better ways to achieve
the desired results. In particular, programmers should avoid using the old
standard C functions, where C++ has introduced new and safer possibilities.

• Do not use malloc, calloc, realloc, and free. Use new and
delete instead. [no-malloc]
You should avoid all memory-handling functions from the standard C

50

library (malloc, calloc, realloc, and free) because they do not call con-
structors for new objects or destructors for deleted objects. Exceptions
may include aligned memory allocations, but this should generally not
be done outside of low-level code in core packages.

• Do not use functions defined in stdio. Use the iostream func-
tions in their place. [no-stdio]
scanf and printf are not type-safe and they are not extensible. Use
operator and operator associated with C++ streams instead. iostream
and stdio functions should never be mixed.

Example:

// type safety

char* aString("Hello sPHENIX");

printf("This works: %s \n", aString);

cout <<"This also works:"<<aString<<endl;

char aChar(’!’);

printf("This does not \%s \\n", aChar);

// and you get a core dump

cout <<"But this is still OK :"<<aChar<<endl;

//extensibility

std::string aCPPString("Hello sPHENIX");

printf("This does not work: \%s \\n", aCPPString);

//Core dump again

It is of course acceptable to use stdio functions if you’re calling an ex-
ternal library that requires them. Admittedly, formatting using C++-
style streams is more cumbersome than a C-style format list. If you
want to use printf style formatting, see Boost format.

• Do not use the ellipsis notation for function arguments. [noel-
lipsis]
Functions with an unspecified number of arguments should not be used
because they are a common cause of bugs that are hard to find. But
catch(...) to catch any exception is acceptable (but should generally
not be used outside of framework code).

51

// avoid to define functions like:

void error(int severity, ...) // "severity" followed by a

// zero-terminated list

// of char*s

• Do not use preprocessor macros to take the place of functions,
or for defining constants. [no-macro-functions]
Use templates or inline functions rather than the pre-processor macros.

// NOT recommended to have function-like macro

#define SQUARE(x) x*x

// Better to define an inline function:

inline int square(int x)

{

return x*x;

};

• Do not declare related numerical values as const. Use enum
declarations. [use-enum]
The enum construct allows a new type to be defined and hides the
numerical values of the enumeration constants.

enum State {halted, starting, running, paused};

• Do not use NULL to indicate a null pointer; use the nullptr
keyword instead. [nullptr]
Older code often used the constant 0. NULL is appropriate for C, but
not C++. As of C++11, use nullptr.

• Do not use const char* or built-in arrays “[]”; use std::string
instead. [use-std-string]
One thing to be aware of, though. C++ will implicitly convert a
const char* to a std::string however, this may add significant over-
head if used in a loop. For example:

void do_something (const std::string& s);

...

52

for (int i=0; i < lots; i++)

{

...

do_something ("hi there!");

Each time through the loop, this will make a new std::string copy
of the literal. Better to move the conversion to std::string outside
of the loop:

std::string myarg = "hi there!";

for (int i=0; i < lots; i++)

{

...

do_something (myarg);

• Avoid using union types. [avoid-union-types]
Unions can be an indication of a non-object-oriented design that is hard
to extend. The usual alternative to unions is inheritance and dynamic
binding. The advantage of having a derived class representing each
type of value stored is that the set of derived class can be extended
without rewriting any code. Because code with unions is only slightly
more efficient, but much more difficult to maintain, you should avoid
it. Unions may be used in some low-level code and in places where
efficiency is particularly important. Unions may also be used in low-
level code to avoid pointer aliasing.

• Avoid using bit fields. [avoid-bitfields]
Bit fields are a feature that C++ inherited from C that allow one to
specify that a member variable should occupy only a specified number
of bits, and that it can be packed together with other such members.

class C

{

public:

unsigned int a : 2; // Allocated two bits

unsigned int b : 3; // Allocated three bits

};

53

It may be tempting to use bit fields to save space in data written to
disk, or in packing and unpacking raw data. However, this usage is not
portable. The C++ standard has this to say:

Allocation of bit-fields within a class object is implementation defined.
Alignment of bit-fields is implementation-defined. Bit-fields are packed
into some addressable allocation unit. [Note: Bit-fields straddle alloca-
tion units on some machines and not on others. Bit-fields are assigned
right-to-left on some machines, left-to-right on others. end note]

Besides portability issues, there are other other potential issues with
bit fields that could be confusing: bit fields look like class members
but obey subtly different rules. For example, one cannot form a refer-
ence to a bit field or take its address. There is also an issue of data
races when writing multithreaded code. It is safe to access two ordi-
nary class members simultaneously from different threads, but not two
adjacent bit fields. (Though it is safe to access simultaneously two bit
field members separated by an ordinary member. This leads to be pos-
sibility that thread-safety of bit field access could be compromised by
the removal of an unrelated member.) Access to bit fields also incurs
a CPU penalty.

In light of this, it is best to avoid bit fields in most cases. Exceptions
would be cases where saving memory is very important and the internal
structure of the class is not exposed. For some cases, std::bitset can
be a useful, portable replacement for bit fields.

• Do not use asm (the assembler macro facility of C++). [noasm]
Many special-purpose instructions are available through the use of com-
piler intrinsic functions. For those rare use cases where an asm might be
needed, the use of the asm should be encapsulated and made available
in a low-level package.

• Do not use the keyword struct for types used as classes. [nos-
truct]
The class keyword is identical to struct except that by default its con-
tents are private rather than public. struct may be allowed for writing
non-object-oriented PODs (plain old data, i.e. C structs) on purpose.
It is a good indication that the code is on purpose not object oriented.

• Do not use static objects at file scope. Use an anonymous

54

namespace instead. [anonymous-not-static]
The use of static to signify that something is private to a source file
is obsolete; further it cannot be used for types. Use an anonymous
namespace instead. For entities which are not public but are also not
really part of a class, prefer putting them in an anonymous namespace
to putting them in a class. That way, they won’t clutter up the header
file.

• Do not declare your own typedef for booleans. Use the bool
type of C++ for booleans. [use-bool]
The bool type was not implemented in C. Programmers usually got
around the problem by typedefs and/or const declarations. This is no
longer needed, and must not be used in sPHENIX code.

• Avoid pointer arithmetic. [no-pointer-arithmetic]
Pointer arithmetic reduces readability, and is extremely error prone. It
should be avoid outside of low-level code.

• Do not declare variables with register. [no-register]
The register keyword was originally intended as a hint to the compiler
that a variable will be used frequently, and therefore it would be good
to assign a dedicated register to that variable. However, compilers have
long been able to do a good job of assigning values to registers; this is
anyway highly-machine dependent.

The register keyword is ignored by all modern compilers, and has been
deprecated in the C++ standard for some time. As of C++17, using
the register keyword is an error.

If you absolutely need to assign a variable to a register, many compilers
have a way of doing this using inline assembly or a related facility. This
is, however, inherently compiler- and machine-dependent, and would
only be useful in very special cases.

3.15 Readability and maintainability

• Code should compile with no warnings. [no-warnings]

Many compiler warnings can indicate potentially serious problems with
your code. But even if a particular warning is benign, it should be fixed,

55

if only to prevent other people from having to spend time examining
it in the future. Warnings coming from external libraries should be
reported to whomever is maintaining the sPHENIX wrapper package
for the library. Even if the library itself can’t reasonably be fixed,
it may be possible to put a workaround in the wrapper package to
suppress the warning. The following gets removes a bogus compiler
warning in a boost header, thus preserving the -Werror flag we add to
our compilation flags

// this is an ugly hack, the gcc optimizer has a bug which

// triggers the uninitialized variable warning which

// stops compilation because of our -Werror

#include <boost/version.hpp> // to get BOOST_VERSION

#if (__GNUC__ == 4 && __GNUC_MINOR__ == 4 && BOOST_VERSION == 105700)

#pragma GCC diagnostic ignored "-Wuninitialized"

#pragma message "ignoring bogus gcc warning in boost header lexical_cast.hpp"

#include <boost/lexical_cast.hpp>

#pragma GCC diagnostic warning "-Wuninitialized"

#else

#include <boost/lexical_cast.hpp>

#endif

If it is really impossible to get rid of a warning, that fact should be
documented in the code.

• Keep functions short. [short-functions]
Short functions are easier to read and reason about. Ideally, a single
function should not be bigger than can fit on one screen (i.e., not more
than 30 to 40 lines).

• put {, } on separate lines [curly-brackets]
Please use

if (condition)

{

statement;

}

instead of

56

if (condition){

statement;

}

it makes things easier to read

• use clang-format to format your code [clang-format]
You can use

clang-format -style=file -i <file>

to format your code according to our specs. It’s not perfect but gets
you close. If you don’t run it we’ll do it for you at some point.

• Avoid excessive nesting of indentation. [excessive-nesting]
It becomes difficult to follow the control flow in a function when it
becomes deeply nested. If you have more than 4 to 5 indentation levels,
consider splitting off some of the inner code into a separate function.

• Avoid duplicated code. [avoid-duplicate]
This statement has a twofold meaning. The first and most evident is
that one must avoid simply cutting and pasting pieces of code. When
similar functionalities are necessary in different places, they should be
collected in methods, and reused. The second meaning is at the design
level, and is the concept of code reuse. Reuse of code has the benefit of
making a program easier to understand and to maintain. An additional
benefit is better quality because code that is reused gets tested much
better. Code reuse, however, is not the end-all goal, and in particular,
it is less important than encapsulation. One should not use inheritance
to reuse a bit of code from another class.

• Document in the code any cases where clarity has been sacri-
ficed for performance. [document-changes-for-performance]
Optimize code only when you know you have a performance problem.
This means that during the implementation phase you should write
code that is easy to read, understand, and maintain. Do not write
cryptic code, just to improve its performance.

57

Very often bad performance is due to bad design. Unnecessary copying
of objects, creation of large numbers of temporary objects, improper
inheritance, and a poor choice of algorithms, for example, can be rather
costly and are best addressed at the architecture and design level.

• Avoid using typedef to create aliases for classes. [avoid-typedef]
Typedefs are a serious impediment in large systems. While they sim-
plify code for the original author, a system filled with typedefs can be
difficult to understand. If the reader encounters a class A, he or she
can find an #include with “A.h” in it to locate a description of A; but
typedefs carry no context that tell a reader where to find a definition.
Moreover, most of the generic characteristics obtained with typedefs
are better handled by object oriented techniques, like polymorphism.
A typedef statement, which is declared within a class as private or
protected, is used within a limited scope and is therefore acceptable.
Typedefs may be used to provide names expected by STL algorithms
(value_type, const_iterator, etc.) or to shorten cumbersome STL
container names.

• No #define in header files except double inclusion protection.
[no-defines]
#define can change the behavior of any code which includes the header
in mysterious ways and we cannot avoid redefining things accidentally.
Just don’t use this, use static consts instead.

• Code should use the standard sPHENIX units for time, dis-
tance, energy, etc. [sphenix-units]
As a reminder, energies are represented as GeV and lengths as cm. Use
the definitions of CLHEP/Geant4 cm, GeV, mm, ... to convert to/from
internal units

3.16 Portability

• All code must comply with the 2011 version of the ISO C++
standard (C++11). [standard-cxx]

A draft of the standard which is essentially identical to the final version
may be found at [1].

58

soon, compatibility with C++14 and at some point C++17 will also
be required.

• Make non-portable code easy to find and replace. [limit-nonportable-
code]
Non-portable code should preferably be factored out into a low-level
package. If that is not possible, an #ifdef may be used. However,
#ifdefs can make a program completely unreadable. In addition, if
the problems being solved by the #ifdef are not solved centrally by
the release tool, then you resolve the problem over and over. Therefore.
the using of #ifdef should be limited.

• Do not specify absolute directory names in include directives.
Instead, specify only the terminal package name and the file
name. [include-path]
Absolute paths are specific to a particular machine and will likely fail
elsewhere. The sPHENIX convention is to include the package name
followed by the file name. Use #include < > for includes from other
packages.

#include </afs/rhic.bnl.gov/sphenix/sys/x8664_sl6/new/include/g4main/PHBBox.h> Wrong

#include "g4main/PHBBox.h" // Wrong, no " " for other package includes

#include <g4main/PHBBox.h> // Right, use < >

• Always treat include file names as case-sensitive. [include-
casesensitive]
Some operating systems, e.g. Windows NT, do not have case-sensitive
file names. You should always include a file as if it were case-sensitive.
Otherwise your code could be difficult to port to an environment with
case-sensitive file names.

// Includes the same file on Windows NT, but not on UNIX

#include <Iostream> //not correct

#include <iostream> //OK

• Do not make assumptions about the size or layout in memory
of an object. [no-memory-layout-assumptions]
The sizes of built-in types are different in different environment. For
example, an int may be 16, 32, or even 64 bits long. The layout of

59

objects is also different in different environments, so it is unwise to
make any kind of assumption about the layout in memory of objects.
If you need integers of a specific size, you can use the definitions from
<cstdint>:

#include <cstdint>

int16_t a; // A 16-bit signed int

uint8_t b; // A 8-bit unsigned int

int_fast_16_t c; // Fastest available signed int type at least 16 bits wide.

The C++ standard requires that class members declared with no in-
tervening access control keywords (public, protected, private) be laid
out in memory in the order in which they are declared in the class.
However, if there is an access control keyword between two member
declarations, their relative ordering in memory is unspecified. In any
case, the compiler is free to insert arbitrary padding between members.

• Take machine precision into account in your conditional state-
ments. Do not compare floats or doubles for equality. [float-
precision]
Have a look at the std::numeric_limits<T> class, and make sure your
code is not platform-dependent. In particular, take care when testing
floating point values for equality. For example, it is better to use:

const double tolerance = 0.001;

...

#include <cmath>

if (std::abs(value1 - value2) < tolerance) ...

than

if (value1 == value2) ...

Also be aware that on 32-bit platforms, the result of inequality opera-
tions can change depending on compiler optimizations if the two values
are very close. This can lead to problems if an STL sorting operation
is based on this.

• Do not depend on the order of evaluation of arguments to a
function; in particular, never use the increment and decre-

60

ment operators in function call arguments. [order-of-evaluation]
The order of evaluation of function arguments is not specified by the
C++ standard, so the result of an expression like foo(a++, vec(a))

is platform-dependent.

func(f1(), f2(), f3());

// f1 may be evaluated before f2 and f3,

// but don’t depend on it!

Beware in particular if you’re using random numbers. The result of
something like

atan2 (static_cast<double>(rand()),

static_cast<double>(rand()));

can change depending on how it’s compiled.

• Do not use system calls if there is another possibility (e.g. the
C++ run time library). [avoid-system-calls]
For example, do not forget about non-Unix platforms.

• Prefer int / unsigned int and double types. [preferred-types]
The default type used for an integer value should be either int or un-
signed int. Use other integer types (short, long, etc.) only if they are
actually needed. For floating-point values, prefer using double, unless
there is a need to save space and the additional precision of a double
vs. float is not important.

• Do not call any code that is not in the release or is not in the
list of allowed external software. [no-new-externals]

3.17 Using ROOT

• Avoid ROOT when possible [do-not-use-root]
Many features of ROOT exist in other libraries (gsl for math, stl for
containers, strings, ...). See it this way - ROOT is used by a few
thousand programmers, stl is used by everyone. Guess which one is
better debugged and more functional?

61

• Avoid TMath [do-not-use-tmath]
TMath is mostly just a thin wrapper around gsl or glibc functions.
But root often adds scary functionalities or shortcuts most users are
not aware off when using this blindly. E.g. TMath::ACos(const double
x):

inline Double_t TMath::ACos(Double_t x)

{

if (x < -1.) return TMath::Pi();

if (x > 1.) return 0;

return acos(x);

}

While this function will return acos(x) for valid values in the range -1
to +1 it will also return valid values for x outside of this range making
debugging almost impossible. The glibc acos(x) returns NaN in those
cases. This will propagate through the rest of the calculations and
indicate in the result that there is a numerical problem somewhere,
while TMath will just give you a wrong result.

• Avoid TString [do-not-use-tstring]
Definitely use std::string instead of TString. Popular is the use of
TString::Form, please replace it by boost::format which has a very
similar syntax.

4 Style

4.1 General aspects of style

• The public, protected, and private sections of a class must be
declared in that order. Within each section, nested types (e.g.
enum or class) must appear at the top. [class-section-ordering]
The public part should be most interesting to the user of the class, and
should therefore come first. The private part should be of no interest
to the user and should therefore be listed last in the class declaration.

class Path

{

62

public:

Path();

~Path();

protected:

void draw();

private:

class Internal

{

// Path::Internal declarations go here ...

};

};

• Keep the ordering of methods in the header file and in the
source files identical. [method-ordering]
This makes it easier to go back and forth between the declarations and
the definitions.

• Statements should not exceed 100 characters (excluding lead-
ing spaces). If possible, break long statements up into multi-
ple ones. [long-statements]

• Limit line length to 120 character positions (including white
space and expanded tabs). [long-lines]

• Include meaningful dummy argument names in function dec-
larations. [dummyargument-names]
Any dummy argument names used in function declarations must be the
same as in the definition. Although they are not compulsory, dummy
arguments make the class interface much easier to read and understand.
For example, the constructor below takes two Number arguments, but
what are they?

class Point

{

public:

63

Point (Number, Number);

};

The following is clearer because the meaning of the parameters is given
explicitly.

class Point

{

public:

Point (Number x, Number y);

};

• The code should be properly indented for readability reasons.
[indenting]
The amount of indentation is hard to regulate. If a recommendation
were to be given then two to four spaces seem reasonable since it guides
the eye well, without running out of space in a line too soon. The
important thing is that if one is modifying someone else’s code, the
indentation style of the original code should be adopted. It is strongly
recommended to use an editor that automatically indents code for you.
Whatever style is used, if the structure of a function is not immedi-
ately visually apparent, that should be a cue that that function is too
complicated and should probably broken up into smaller functions.

• Use spaces, not tabs [no-tabs]
You can change your editor to emit spaces instead of tabs

• Do not use spaces in front of [] and to either side of . and ->.
[spaces]

a->foo() // Good

x[1] // Good

b . bar() // Bad

Spacing in function calls is more a matter of taste. Several styles can be
distinguished. First, not using spaces around the parentheses (K&R,
Linux kernel):

64

foo()

foo(1)

foo(1, 2, 3)

This is what we use. If there are multiple arguments, they should have
a space between them, as above. A parenthesis following a C++ control
keyword with as if, for, while, and switch should always have a space
before it.

• Keep the style of each file consistent within itself. [style-
consistency]

Although standard appearance among sPHENIX source files is desir-
able, when you modify a file, code in the style that already exists in
that file. This means, leave things as you find them. Do not take a
non-compliant file and adjust a portion of it that you work on. Either
fix the whole thing, or code to match.

4.2 Comments

• Use Doxygen style comments before class/method/data mem-
ber declarations. Use “//” for comments in method bodies.
[doxygen-comments]
sPHENIX has adopted the Doxygen code documentation tool, which
requires a specific format for comments. Doxygen comments either be
in a block delimited by /** */ or in lines starting with ///. We rec-
ommend using the first form for files, classes, and functions/methods,
and the second for data members.

/**

* @file MyPackage/MyClusterer.h

* @author J. R. Programmer

* @date April 2014

* @brief Tool to cluster particles.

*/

#ifndef MYPACKAGE_MYCLUSTERER_H

#define MYPACKAGE_MYCLUSTERER_H

65

#include <calobase/RawClusterContainer.h>

namespace MyStuff {

/**

* @brief Tool to cluster particles.

*

* This tool forms clusters using the method

* described in ...

*/

class MyClusterer

{

public:

...

/**

* @brief Cluster particles.

* @param particles List of particles to cluster.

* @param[out] clusters Resulting list of clusters.

*

* Some additional description can go here.

*/

int cluster (RawClusterContainer& clusters) const;

...

private:

/// Property: Cluster size.

float m_clusterSize;

...

};

} // namespace MyStuff

#endif // MYPACKAGE_MYCLUSTERER_H

See the sPHENIX Doxygen page [11]. Remember that the /* */ style
of comment does not nest. If you want to comment out a block of code,

66

using #if 0 ... #endif is safer than using comments.

• All comments should be written in complete (short and ex-
pressive) English sentences. [english-comments]
The quality of the comments is an important factor for the understand-
ing of the code. Please do fix typos, misspellings, grammar errors, and
the like in comments when you see them.

• In the header file, provide a comment describing the use of
a declared function and attributes, if this is not completely
obvious from its name. [comment-functions]

class Point

{

public:

/**

* @brief Return the perpendicular distance of the point

*

from Line @c l.

*/

Number distance (Line l);

};

The comment includes the fact that it is the perpendicular distance.

5 REFERENCES

References

[1] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf

[2] H. Sutter, C++ Users Journal, 20 (7), 2002.
[http://www.gotw.ca/publications/mill22.htm]

[3] A. Krzemieski, noexcept what for?, 2014.
[http://akrzemi1.wordpress.com/2014/04/24/noexcept-what-for/]

67

[4] https://www.gnu.org/software/libc/manual/html node/Reserved-
Names.html

6 Changes

Version 1.0

• Initial Version from ATLAS modified for sPHENIX

68

